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GENERAL INTRODUCTION



GENERAL INTRODUCTION

The ankle joint consists of three bones: the tibia, which bears most of the weight; the fibula,
which forms the lateral stability of the ankle fork; and the talus, which allows flexion and
extension of the ankle and bears the weight transferred from the tibia to the foot. Most of the
stability of the ankle is provided by its ligaments. Notable for this thesis are mainly the Anterior
and Posterior Inferior Tibiofibular Ligaments (AITFL & PITFL)— that form the syndesmosis—and
the medial deltoid ligament. The syndesmosis provides lateral stability, whereas the medial
deltoid supports medial stability. The ankle is crucial for our mobility and vulnerable to injuries
as it bears forces many times our body weight during regular walking and up to thirteen times
during running.' Due to these factors, ankle fractures are one of the most common fractures
presenting in the Emergency Department (ED).

Diagnostics for ankle fractures rely on imaging, conventionally with radiographs, and
increasingly combined with Computed Tomography (CT) scans. The availability of large datasets
of radiographs and CT scans allows for advanced imaging analyses using Artificial Intelligence
(Al) applications and 3D technology. We hypothesized that advancements in imaging modalities
can improve diagnostics, understanding, and treatment of ankle fractures. Hence, this thesis
explores ankle fractures in adults and children, with the use of advanced imaging such as
Convolutional Neural Networks (CNNs), fracture maps, and 3D reconstructions.

PART | - Exploring Artificial Intelligence in Ankle Fractures
Artificial Intelligence has surged and is increasingly affecting our daily lives, despite ‘doom
and gloom'’ by many. Despite its challenges, and since the start of this thesis, the field has seen
incredible development. It began in 1946 with the pioneering work of Alan Turing, the godfather
of computers, with the creation of the ‘Turing machine'. A thought experiment that originated
computers as we now know them. Without his efforts, many of the studies in this thesis would
not have been possible. In 1983, Apple Inc. introduced the first computer with a graphical user
interface (GUI)—versus a terminal with just lines of text— which made it possible to operate
computers as we are doing today. GUIls have become the default way to communicate with
computers. As part of this thesis, | moved to Adelaide, Australia, twice, in total for two years.
Despite the innovative character of this thesis, when | first arrived in Adelaide, | encountered
one of the last computers that was still operated using a terminal instead of a GUI in the
Emergency Department of Flinders Medical Centre. Along with this thesis, that computer has
advanced with technology to include a graphical interface and electronic patient filesystem.
| believe that Artificial Intelligence will provide a similar advancement to Medicine, as the
computer from Flinders Emergency Department brought to the ED workflow during the
timeframe of this thesis.

Artificial Intelligence, and ‘Computer Vision' enable computers to assess images and
provide predictions about objects in them. Currently, Convolutional Neural Networks (CNNs)



can perform at the level of experienced surgeons and may in the future even surpass them.
CNNs are designed to mirror a human neural network—our brain—and work in a similar fashion,
where it is trained to recognize certain features, akin to our own learning. In Chapter 1,
we explore the possibilities and drawbacks of this advanced technology in trauma. Part |
expands on this introduction and provides a detailed overview and original research about
Artificial Intelligence in Orthopaedic Trauma. Developing a Machine Learning (ML) model
and testing it on your own data often results in good results; however, ideally, the model
needs to perform regardless of its environment—a process known as external validation.
In Chapter 2, we explore not only how many of the studies developing a machine learning
model were externally validated, but also in which way they did this. As the field advances,
models are increasingly developed to analyze Computed Tomography (CT) scans. As CT scans
are ubiquitous in complex trauma, we evaluate the accuracy and benefits of ML models for
this more advanced imaging modality in Chapter 3. For Chapter 4, we developed a CNN that
detects, classifies, and segments lateral malleolar fractures. Apart from localizing fractures
to enhance diagnostics and optimal treatment, classification systems are plagued by low
inter-observer reliability. In an international collaboration with colleagues from Stockholm,
Sweden, we externally validated a CNN that classifies ankle fractures according to the AO
system? in Chapter 5. This first part is concluded by Chapter 6, a book chapter in Rockwood
and Green Fractures in adults, which summarizes recent developments and describes future
perspectives.

PART Il - Advanced Imaging in Paediatric Ankle Fractures

Paediatric trauma is often different from adult trauma, due to the presence of unique
anatomy in the developing skeleton. In the ankle specifically, differences are the relative size
of ligaments and the presence of growth plates (physes). Injuries involving the physis are
referred to as ‘transitional’ fractures and occur mostly between the ages of 12 and 15, as this
is the period where the physis transitions from open to closed. Tillaux and triplane fractures
are transitional injuries involving the ankle. Triplane fractures are complex three-dimensional
injuries that extend into three planes, namely the sagittal (epiphysis), axial (physis), and coronal
(metaphysis). Triplane fractures occur in children where closure of the physis has started, and
the fracture pattern is hypothesized to be determined by the extent of closure. This classic
teaching that fracture pattern is based on age and respective extent of physeal closure is based
on studies from the 1960s. Part Il challenges these assumptions regarding pathophysiology
and fracture pattern of paediatric ankle fractures by using advanced imaging techniques.
Chapter 7 re-evaluates the theory from the 1960s that the physis is the primary determinant
of the fracture pattern of triplane fractures. Moreover, much is still unknown about the exact
trauma mechanism and optimal reduction strategies for triplane fractures. Chapter 8 explores
the similarities and differences between the adult trimalleolar and paediatric triplane fractures
to facilitate improved understanding and treatment of these complex injuries.



PART Il - Prospective Analysis of Ankle Fractures

Compared to PART Il, where we explored the trauma mechanisms of injuries that are scarcely
studied, trauma mechanisms of adult ankle fractures are well described. Prospective
collection of data is crucial to understand which factors are associated with clinical outcome
after ankle fractures. The challenge in adult ankle trauma is described in the following
paradox: despite the great experience of surgeons in handling these high-volume injuries,
the outcomes following operative fixation remain surprisingly suboptimal. While surgeons
exhibit confidence and familiarity with treating these common fractures, patients often grapple
with short-term and long-term consequences such as diminished mobility, chronic pain, and
early posttraumatic osteoarthritis. It is still not fully elucidated why specific characteristics,
such as type Il Haraguchi posterior malleolar fractures, fracture severity, trimalleolar
involvement, and Body Mass Index (BMI) are touted to be significant contributors to diminished
clinical outcomes. These factors alone have not provided a comprehensive explanation for
the variability in outcomes and treatment for these fractures. Consequently, the reliance on
surgeons’ experience persists, highlighting a gap where evidence-based decision-making
could play a pivotal role. This prompts a closer examination of potentially ‘subtle’ surgical
and pathoanatomic factors—such as the quality of postoperative reduction, presence of loose
bodies, or malpositioned osteosynthesis materials. Understanding these prognostic factors
that influence outcomes is paramount for effectively informing patients post-trauma and
refining surgical decision-making processes. We explored the effect of these factors on post-
operative outcomes in Chapter 9.
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ABSTRACT

Artificial intelligence (Al) is, in essence, the concept of ‘computer thinking’, encompassing
methods that train computers to perform and learn from executing certain tasks, called
machine learning, and methods to build intricate computer models that both learn and adapt,
called convolutional neural networks. Computer vision is a function of Al by which machine
learning and convolutional neural networks can be applied to enable computers to capture,
analyze, and interpret information from clinical images and visual inputs. This annotation
summarizes key considerations and future perspectives concerning computer vision,
questioning the need for this technology (the ‘why'), the current applications (the ‘what’), and
the approach to unlocking its full potential (the ‘how’).



WHY Al AND COMPUTER VISION?

In orthopaedic surgery, we have been shown time and time again that “surgeons agree mostly
with themselves, but not so much with each other”.-® Daniel Kahneman coined this form of
human bias “WYSIATI": What You See Is All There Is.? Our field is rife with unsatisfactory levels
of interobserver reliability in the recognition and classification of fractures among surgeons. the
issue of reliability covers trauma from injuries involving the upper?*’and lower limb.%¢® advances
in the power of hardware and computing, the development of more accurate imaging techniques,
and improvements in the capabilities of software by using computer vision, promise to increase
the speed and accuracy of diagnosis and overcome concerns about reliability for the evaluation of
images in trauma.'®" The widely used convolutional neural networks have several characteristic
features and merits. Compared with conventional machine-learning methods such as decision
tree, random forest, boosting, and support vector machines, which are typically used to solve
problems in machine-learning on top of structured data, the convolutional filtering operations
in a convolutional neural network can respond to local patterns in features of input which are
spatially and temporally correlated. These consume fewer computational resources compared
with a matrix multiplication process and hence are predominantly used in the processing of
images and videos. Convolutional neural networks also include a type of deep neural network in
which the structure of the model can be easily modified by adding or removing a layer. There is
arich literature involving the structure of convolutional neural networks in the computer vision
domain, providing a good methodological basis for the analysis of medical images. Finally, the
number of learnable parameters in a convolutional neural network is at a scale of millions to
billions, and the optimization of the parameters of models is often favourable when dealing with
a massive amount of data.

Rather than a replacement for human interpretation, we believe that the attraction of
computer vision in the practice of trauma surgery lies in augmenting the diagnostic capabilities
of surgeons and musculoskeletal radiologists, reducing bias and variation, minimizing error
and mismanagement, and ultimately buying time to focus on our patients and delivering optimal

Care_10.12,13

HOW DOES COMPUTER VISION WORK?

Al algorithms are now incorporated into many digital products, from smartphones to
automated vehicles. the data generated through use of these devices serve as a perpetual
source of information for further computer learning and improvement. In orthopaedic surgery,
Al is being used in the development of advanced models of prediction as well as automated
methods for the diagnosis and classification of different conditions. Models which predict the
stratification of risk using machine learning now go beyond conventional statistics identifying
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non-linear relationships between individual characteristics and outcomes.'*' For instance,
models have been used to predict same-day discharge and assess balance and prosthetic
alignment during total knee arthroplasty.’®'” Computer vision has been evaluated in the
detection and classification of fractures using radiographs and CT scans.'®? In other specialties,
clinicians are using this technology to interpret images such as mammograms, fundoscopies
for papilloedema, and CT scans for the identification of intracerebral haemorrhage.?-22There
has been a considerable increase in the number of studies aiming to improve clinical decision-
making through the analysis of large databases using Al and computer vision.'®'*2* The next
phase should focus on prospective clinical evaluation, the maturation of techniques, and
expansion of work to gain external validity in geographical areas and populations, in order to
consolidate accuracy, reliability, and transferability while minimizing bias."” Kunze et al**and
others have emphasized these factors and the need for improvement in the regulations and
standards for taxonomy, the quality of data, critical appraisal, and reporting.2®-2

WHAT ARE WE DOING WITH Al AND COMPUTER VISION?

Appreciating the fundamental differences in ‘learning'—the process of absorbing information
to increase knowledge, skills, and capabilities, and applying this intelligence across a variety
of different contexts—between humans and Al-powered machines can help us improve our
understanding of the technology behind computer vision. Humans use the brain’s computational
power, memory, and innate ability to learn from direct experience or to be trained by others.
We are also taught to explain how and why we came to certain conclusions about the things
we have learned and interpret, and write out the mathematics (or ‘logic’) so that it can be
understood and validated by others. In contrast, machines driven by Al rely on the provision
of data and the respective outcomes into the system to build current and future logic, and
understand how outcomes might be inferred. A trained machine-learning model is highly
convolutional, encapsulating millions of numerical parameters that collectively contribute to
any decision it makes. Therefore, it is beyond our human capacity to fully explain why a model
came to a certain conclusion, as the decision could be based on either a pattern that makes
sense (clinically) or on a pattern with apparent association to the decision (i.e. A model may
learn to recognize sheep by learning the texture of grass, as sheep are always found on grass).

Increasing the number of labels and observers is the most common way to deal with
inadvertent human interobserver variation and mistakes. However, what we are teaching
the computer is the majority-voted decision, which is usually the best available truth but
unfortunately not error-free. If we want the computer to learn beyond what is given (i.e.
Information based on our understanding such as of classifications) it needs to act with the
task (environment) and trial-and-error actions, where the process is in many ways similar to
the evolutionary process. For example, the alphago Zero chess player made by Google Al was
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created by allowing Al players to play against each other.? This was different from the original
alphago,*® which learned from human moves. After a huge number of games, the Al players
start to invent moves. As the computer can play so much quicker than a human, it may cover
or surpass the entirety of games played throughout human history and thus generate a huge
amount of data, which is key to an excellent model. In order to generate enormous datasets
and create models that outperform us, it is essential that we collaborate, not only nationally but
globally. However, it is also essential to consider ethical issues. For example, what if a dataset
of 100,000 images is lost? Even though these images were anonymized, it would still lead to
headlines and have an enormous effect on the future collection of these datasets. In addition to
ethical considerations, laws between countries about sharing data between institutions, each
with their own protocols and mandates, often significantly impair collaborations.

In computer vision-based analysis of orthopaedic images, the input can include any form
of digital data, most often radiographs and CT scans. Medical images are usually stored in the
Digital Imaging and Communications in Medicine (DICOM) format as this contains substantial,
often unnecessary, and sometimes incorrect, information about the patients and the study,
the data are converted into more generic formats such as Portable Network Graphics (PNG,
lossless) or Joint Photographic Experts Group (JPEG, lossy compression) files to minimize
redundancy and increase efficiency. These data and converted formats are then split into
training and test sets in a 60:40 or 80:20 ratio. Within the training set, a separate set of images is
selected or stochastically sampled, often using n-fold cross-validation, to develop the validation
set. This is then used to optimize the performance of the training set without compromising the
objectivity of the test set, which is then finally used to evaluate performance. In other words,
one is not directly training the model to fit the test set as a strategy to avoid overfitting the
model. Thus, the computer model can effectively perform the designated task, not only on the
images it has seen before, but on the images it has yet to see. This characteristic is termed
‘generalization’. The computer can reach human-level performance, or even outperform humans
in certain tasks, but limitations in the ways of validating decisions can lower the reliability of
medical Al systems, making the use of applied Al in medicine challenging.

PITFALLS AND WHAT TO LOOK OUT FOR WHEN
APPRAISING MANUSCRIPTS DEALING WITH
CONVOLUTIONAL NEURAL NETWORKS FOR FRACTURES

There is a healthy reservation or resistance towards using Al in diagnostics and medical decision-
making, and anyone who has had Al take the wheel can attest that the deviation from the normal
situation is challenging. However, as we gain more experience with the applications of Al, it will
become easier to understand and navigate through these situations. Even though computers,
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given the ‘artificial’ intelligence, might be able to perform certain tasks better than humans, they
do not possess common sense and are therefore always ‘stupid’ or cold as robots. The main
weakness of convolutional neural networks is the fact that their quality relies heavily on the
database upon which they were trained. One cannot expect such a network to recognize fractures
or pathology it has not seen before, even though they may be similar to what it already ‘knows'.
Therefore, the utmost care must be taken when choosing the data that are used for training,
testing, and validation, either internally or externally. External validation is a crucial step in the
validation of a model on new data from a different geographical location, as this could expose
possible biases and performance weaknesses.”” Many Al models in orthopaedic surgery have not
undergone external validation.!” however, assisting clinicians with Al-based solutions has some
important strengths, including consistent predictions, no mental fatigue, no inherent bias, and
analysis in just a few seconds. It can reach the level of an experienced clinician and is therefore
able to provide continual top-level expertise effortlessly.®'-3¢

FUTURE PERSPECTIVES

Regardless of the challenges in the past, present, and future, there has been a rapid
development of Al and a surge of practical applications in day-to-day life. We enjoy the use
of voice assistance to turn on the lights, dictate a message, or as reminders. We believe the
future of medicine will enjoy similar quality-of-life improvements, with significant effects on
the lives of our patients. Would it not bring comfort to patients and doctors to be able to make
informed decisions together, based on the patient’s specific medical characteristics, and to
focus on the patients who require close monitoring, and spend one’s time where it is the most
efficient? We do not believe that Al will replace doctors, but will instead reduce the burdens
on us and allow us to spend our time more efficiently with our patients.

In order to achieve these goals, we need to overcome one of the most difficult challenges
yet: the relative shortage of quality data in a single hospital. We need to rise above isolated
models that are developed, tested, and applied clinically in one centre, and thus are not
applicable elsewhere. Only together can we create large enough databases to predict the
conditions that matter, such as patient-specific outcomes based on individual characteristics,
the risks of postoperative infection, hardware failure, morbidities, and mortality.

TAKE HOME MESSAGE

Artificial intelligence has seen a surge of applications; however, only together can the
orthopaedic community create large databases so we can train models that are globally
applicable and with a greater ability to predict the conditions that matter.
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ABSTRACT

Aims

The number of convolutional neural networks (CNN) available for fracture detection and
classification is rapidly increasing. External validation of a CNN on a temporally separate
(separated by time) or geographically separate (separated by location) dataset is crucial to
assess generalizability of the CNN before application to clinical practice in other institutions. We
aimed to answer the following questions: are current CNNs for fracture recognition externally
valid?; which methods are applied for external validation (EV)?; and, what are reported
performances of the EV sets compared to the internal validation (IV) sets of these CNNs?

Methods

The PubMed and Embase databases were systematically searched from January 2010
to October 2020 according to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement. The type of EV, characteristics of the external dataset,
and diagnostic performance characteristics on the IV and EV datasets were collected and
compared. Quality assessment was conducted using a seven-item checklist based on a modified
Methodologic Index for Non-Randomized Studies instrument (MINORS).

Results

Out of 1,349 studies, 36 reported development of a CNN for fracture detection and/or
classification. Of these, only four (11%) reported a form of EV. One study used temporal EV,
one conducted both temporal and geographical EV, and two used geographical EV. When
comparing the CNN’s performance on the |V set versus the EV set, the following were found:
AUCs of 0.967 (1V) versus 0.975 (EV), 0.976 (IV) versus 0.985 to 0.992 (EV), 0.93 to 0.96 (IV)
versus 0.80 to 0.89 (EV), and F1-scores of 0.856 to 0.863 (IV) versus 0.757 to 0.840 (EV).

Conclusion

The number of externally validated CNNs in orthopaedic trauma for fracture recognition is
still scarce. This greatly limits the potential for transfer of these CNNs from the developing
institute to another hospital to achieve similar diagnostic performance. We recommend the
use of geographical EV and statements such as the Consolidated Standards of Reporting
Trials-Artificial Intelligence (CONSORT-AI), the Standard Protocol Items: Recommendations
for Interventional Trials-Artificial Intelligence (SPIRIT-AI) and the Transparent Reporting of
a multivariable prediction model for Individual Prognosis or Diagnosis—Machine Learning
(TRIPOD-ML) to critically appraise performance of CNNs and improve methodological rigor,
quality of future models, and facilitate eventual implementation in clinical practice.



INTRODUCTION

An increase in the use of artificial intelligence (Al), particularly convolutional neural networks
(CNNs, which mimic human visual cortex neurons), has been observed in medical imaging.™
CNNs are able to process enormous volumes of data that surpass the pace of human
observations, and in the field of orthopaedic trauma, CNNs have been reported to perform at
the level of experienced orthopaedic surgeons and radiologists in detection and classification
of distal radius, hip, proximal humerus, pelvis, and femur fractures.’"

Performance of CNNs is evaluated using unseen data from the same initial longitudinal
dataset used for training the CNN, called the test set or internal validation (IV) set. However,
characteristics of these data are identical (i.e. same hospital and time period) to those used
for model development. Algorithms generally perform poorly when externally validated with
datasets from different institutions.'*' For example, in automated recognition of distal radius
fractures, Blithgen et al® reported decreased performance using the external validation
(EV) set, while performance was excellent using the IV set. To explore weaknesses and
generalizability of CNNs, two techniques can be used: geographical (separated by location) or
temporal (separated by time) validation (Figure 1)." Arguably only the former truly represents
EV that allows transfer of locally trained CNNs to applications in other hospitals.!” Hence,
geographical EV is considered the most stringent test of a model's performance and an
important step before clinical implementation.””"”
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Therefore, we aimed to answer the following: are CNNs for fracture recognition externally
valid?; what are current methods applied for EV of CNNs for fracture recognition in the field
of orthopaedic trauma?; and what are the reported performances of EV compared to the IV?
To our knowledge, this is the first study to evaluate current applications of EV of CNNs used
in orthopaedics for fracture detection and/or classification.

METHODS

A literature search according to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement? (Figure 2) was conducted in the PubMed and EMBASE
libraries for articles published between January 2010 and October 2020. The protocol was
registered on PROSPERO (CRD42020216478) prior to screening the articles. Together with a
medical librarian a search strategy was formulated (Supplementary Material).

Records Identified Through the Pubmed
and Embase Databases (n=1349)

| Duplicates Removed (n=247)

Title and Abstract Screening
(n=1102)

} Studies Excluded (n=1066)

Full-Text Screening of Potentially .
Eligible Articles (n=36) Full-Text Articles Excluded (n=32)

- No external validation

Included Studies in Qualitative . i
Synthesis (n=4) Ongoing Studies (n=0)
Studies Awaiting Classification (n=0)

Figure Il. PRISMA Flowchart depicting the study selection during screening and inclusion of articles for
a search period from 2010 to October 2020

Two reviewers (LOEC, AVDM) independently screened the titles and abstracts of the retrieved
articles. They subsequently performed the full-text screening to check eligibility of articles with
predetermined inclusion criteria. Disagreements between reviewers were solved by consulting
a third reviewer (JP). Due to ambiguous and unclear reporting of ‘external validation’ in
articles found during the preliminary searches, all articles that reported the use of a CNN in
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orthopaedic trauma were selected for full-text review. From the full-text review, only articles
that evaluated their CNN on a separate dataset—geographically or temporally—from that used
during the CNN development (the “external validation”) were included.

Inclusion criteria were journal articles reporting the use of a CNN in orthopaedic trauma
including a form of EV, studies published after 2010, and written in English, Dutch, French,
Portuguese, or Spanish. Exclusion criteria were the use of a CNN outside of an orthopaedic
trauma setting, studies evaluating robot-assisted surgery techniques, studies with mixed
cohort without clear subgroup reporting, review articles, letters to the editor, meeting
abstracts, technique papers, and animal and cadaveric studies.

The search strategy yielded a total of 1,349 articles. After removal of duplicates, a total
of 1,102 articles were screened. Overall, 36 studies reported the use of a CNN for fracture
detection and/or classification and were selected for full-text review. Of these, four studies
reported a form of EV (Figure 2). Additionally, no new studies were identified after manually
screening the reference lists of included studies.

Quality assessment was performed by two independent reviewers (LOEC, AVDM).
Disagreement was solved through discussion with a third reviewer (JP). The Quality
Assessment of Diagnostic Accuracy Studies (QUADAS) criteria, a tool designed for the
assessment of published diagnostic studies in systematic reviews, was not used because it
was previously considered difficult to apply in machine-learning studies.?"?? Due to lack of
suitable tools assessing risk of bias for machine learning studies, we modified the Methodologic
Index for Non-Randomized Studies (MINORS) instrument, commonly used to assess the quality
of cohorts or case-control studies.?® The modified MINORS included the following items:
disclosure, study aim, input features, ground truth, EV method, EV dataset, and performance
metric. Screening and full-text review were conducted using Covidence (Veritas Health
Innovation, Australia). Standardized forms were used to extract and record data (Excel v.
16.21; Microsoft, USA).

Outcome measures

To answer the primary research question, EV was defined as verification of model performance
on a separate dataset, geographically or temporally, from that used for model development.
To answer the secondary research question, type and characteristics of the EV set (dataset
used, number of images, location and date of collection) were collected from the included
articles. To answer the tertiary research question, performances of the CNN on the IV and EV
datasets were collected and compared. All four studies were used to answer both secondary
and tertiary research questions.

The following items were collected from all included studies: authors, year of publication,
input feature (e.g. radiographs), radiological views if applicable (e.g. anteroposterior (AP)),
anatomical location, output classes, ground truth label assignment, CNN model used, size,
source and date of the initial dataset used for development, performance on IV set (e.g. area
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under the curve (AUC)), method of EV (temporal or geographical), size, source and date of EV
set, and performance on the EV set (e.g. AUC).

Three studies®?“?reported the area under the receiving operating characteristics curve
(AUC-ROC) to evaluate 1V and EV performance. The AUC is a common metric to report CNN
performance,? where a value of 1.0 indicates perfect discriminatory performance, whereas
0.5 indicates a prediction equal to that of chance. One study used F1-score to evaluate model
performance.?’ The F1-score (scored between 0 and 1) is a harmonic mean of precision (positive
predictive value) and recall (sensitivity), where it requires both to be high for the F1-score
to be high.

EV dataset characteristics and CNN features

All studies addressed Al models for fracture detection. In addition, one also used localization
of fractures on images.® Zhou et al?” addressed both fracture detection and classification.
The CNNs detected fractures on a single anatomical location like the wrist,*?* elbow,? or
ribs.?” Input features of three studies®??>were conventional radiographs; one study used CT
scans.?” All four studies reported the use of IV, with sets ranging from 98 CT scans? to 3,500
radiographs.?

Quality appraisal

All studies reported disclosure. Study aim was clearly stated in all included studies, thereby
reducing the possibility of outcome bias. All four studies clearly described the size, time,
and location of collection of the EV dataset used, how the performance of the Al model was
determined, and the ground truth (the reference standards used in Al). Out of the four studies
included, three studies clearly stated the EV method used.>?*?% One study used external data
to improve model robustness and generalizability, however this was done before internally
validating the model performance on the test set.?’” The inclusion and exclusion criteria for
input features were clearly described in three studies.®*??” However, for one of the studies it
was unclear which eligibility criteria were used for included radiographs.?*

Statistical analysis

Performance metrics used in each study were described, as well as its values for fracture
detection and classification tasks. The values were given for both IV and EV set whenever
available. Descriptive statistics such as size of the EV, training, and |V set were reported.
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RESULTS

To answer the primary research question, which CNNs for fracture recognition are externally
valid and thus available for transfer from the developer to another hospital: four of 36 (11%)
studies to date reported the use of EV (Table I).

To answer the second research question (which methods of EV for fracture recognition
CNNs are currently used in the field of orthopaedic trauma), the following methodologies were
identified (Table I).

CNNs deployed by Lindsey et al? were trained and internally validated on 31,490 and
3,500 respective radiographs between September 2000 and March 2016, and temporal EV
performed with 1,400 radiographs from July to September 2016 from the same hospital. No
geographical EV was applied.

Choi et al® conducted both temporal and geographical EV and used 258 patients for their
temporal EV, which were collected between January and December 2018, and 95 patients
collected at another hospital for their geographical EV. The CNN was trained and internally
validated on 1,012 and 257 radiographs from their institution collected between January 2013
and December 2017.

The final two studies used geographical EV exclusively. Zhou et al?’ reported the use of
a total of 75 patients for the geographical EV from three different respective hospitals with
the original model trained and internally validated on 876 and 98 patients respectively, while
Bliithgen et al® randomly selected 100 patients from the MURA dataset?® with the index CNN
trained and internally validated on 166 and 42 patients from the authors' local institution.

Performance of CNN on EV compared to test set
To answer the third study question on performance of CNNs for fracture recognition on test
set versus EV, this systematic review yielded four studies.

Comparing the CNNs' performance on the IV versus EV set, the following values are
found: AUC of 0.967 vs 0.975 for distal radius fracture recognition,?* AUC of 0.976 versus 0.985
(temporal) and 0.992 (geographical) for paediatric supracondylar fracture recognition,? AUC
of 0.93 to 0.96 versus 0.80 to 0.89 for recognition of distal radius fractures,® as well as an F1-
score of 0.856 to 0.863 versus 0.757 to 0.840 for rib fracture recognition and classification on
thoracic CT scans.?

Lindsey et al* reported slightly improved performance (AUC 0.967 vs 0.975) upon temporal
EV. Choi et al®® reported an increase of the AUC when geographically externally validated, a
decrease of 10% accuracy detecting normal elbows, and an increase of 5% accuracy in detecting
fractures, whereas the temporal EV set accuracy performed similarly to the IV set. Blithgen
et al® report a decrease in performance, for which the decrease in AP view of the distal radius
is statistically significant (p = 0.008 to 0.021); however, calculating p-values in comparing AUCs
has limited value. In Zhou et al,?” a decreased F1-value is reported for the geographical EV sets.
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DISCUSSION

There has been a significant increase in the use of CNNs in the field of orthopaedics the past
few years.""" Papers tout promising results, however careful evaluation of performance and
clinical utility of CNNs is warranted. EV is one of the crucial steps to secure generalizability of
CNNs developed to detect pathoanatomy,'*?3" prior to implementation into clinical practice. As
many studies in our field now claim to have developed CNNs that perform at least on par with
radiologists and orthopaedic surgeons,*®%?42> we aimed to review if these CNNs for fracture
recognition are indeed externally valid and thus ready for clinical application; and secondly
which methods of EV were used. Just four out of 36 full-text reviewed studies report any form
of EV, and three applied and tested their algorithm to a geographically different dataset. None
of the current CNNs have been prospectively tested in clinical practice.

This study has several strengths and weaknesses: first, an appropriate risk of bias
assessment tool currently does not exist for studies reporting the use of a CNN, therefore we
modified the MINORS tool. Second, although a broad search strategy encompassing two large
databases was used, potentially relevant publications or algorithms developed for commercial
purposes might have been missed. Third, comparability of the diagnostic performance
characteristics between studies is limited as studies developed CNNs recognizing different
types of fractures, however this factor did not affect answering our research questions.

Although EV of CNNs for fracture recognition is scarce in orthopaedic trauma, authors
of four included studies did stress the importance of EV.5%2527 They discussed the use of
EV in evaluating CNNs, to discover generalizability and real-world performance. Indeed,
EV evaluates the performance of CNNs in a different clinical context, a crucial step prior
to implementation in clinical practice.”® In other fields of medicine, this step is believed to
be paramount before translation to clinical practice.®® EV is considered the sequel to IV in
evaluating a model, as it addresses transportability, rather than reproducibility.®? The effect of
factors, such as differences in demographics, operator-dependent radiological variances (for
example, angle, rotation, and radiation dosage when performing a radiograph or CT), and brand
and quality of radiograph machines on performance of the CNN need to be evaluated before
one can transport any CNN to another institution.’®® This is highlighted by Raisuddin et al,*
who advocate for in-depth analyses of artificial intelligence models, as reported in their paper
where their model had great performance on radiographs from the general population, but
significantly reduced performance on cases that were deemed hard for diagnosis by clinicians.

In general, true model performance as tested via EV is lower than the performance
assessed with the dataset used for model development.’®353¢ In this review for fracture
detection and classification, studies conducting temporal EV reported similar or slightly
improved performance compared to the IV set.?#® In contrast, studies using a geographically
split dataset reported a decrease in performance with use of EV,*?? indicating the superiority
of geographical over temporal validation. Blithgen et al® explains that the decrease in
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performance observed indicates that the “variance” in images differed significantly between
the IV and geographical EV sets, emphasizing the importance of geographical EV.

Not only variances in data, but also variation in labelling, can lead to varying performance:
label noise can severely impact performance of CNNs,*” and radiology reports are often based
on only one observer.®® In addition, these reports can have a variety of expertise and accuracy
depending on who interprets the images.?* Data labelling performed by a single expert carries
significant risk of developing a biased CNN, catered to the opinion of one observer. Expert
consensus can also be used, based on the assumption that agreement implies accuracy.®
Nonetheless, limited availability of qualified experts to provide accurate image labels is a
challenging problem when developing CNNs.3® Although the input of experts—especially
regarding evaluation of model predictions—is imperative to ensure clinical accuracy and
relevance, reference standards such as follow-up imaging and surgical confirmation are
considered the most accurate method to train CNNs.® However, these are not always available,
especially in simple fractures.

Although the importance of and need for EV is highlighted by many studies,'84?%% this
review shows that EV of fracture recognition CNNs remains scarce. In addition, there is a
lack of uniformity in the method of conducting and reporting of EV, such as defining ground
truth. We therefore recommend readers to be cautious in interpreting performance when
evaluation is limited to an internal or temporal validation set—as performance may vary when
encountering data with different characteristics—and ideally geographical EV should be used
to assess ‘true’ performance and generalizability. In addition, we advise the development and
use of standardized methodology such as the recently published statements like the Clinical
Artificial Intelligence Research (CAIR) checklist,“ Standard Protocol Items: Recommendations
for Interventional Trials—Artificial Intelligence (SPIRIT-AI),*” and CONsolidated Standard for
Reporting Trials—Artificial Intelligence (CONSORT-AI).“8 Several announced statements are
still in development, like the Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis-Machine Learning (TRIPOD-ML)* and the Standards for
Reporting Diagnostic Accuracy -Artificial Intelligence (STARD-AI). Using these standardized
statements will improve methodological rigor, quality of future models, and facilitate eventual
implementation in clinical practice.

Take home message

We recommend readers to be cautious in interpreting performance when evaluation is limited
to an internal or temporal validation set—as performance may vary when encountering data
with different characteristics—and ideally geographical external validation should be used to
assess 'true’ performance and generalizability.
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ABSTRACT

Purpose

The use of computed tomography (CT) in fractures is time consuming, challenging and suffers
from poor inter-surgeon reliability. Convolutional neural networks (CNNs), a subset of artificial
intelligence (Al), may overcome shortcomings and reduce clinical burdens to detect and classify
fractures. The aim of this review was to summarize literature on CNNs for the detection and
classification of fractures on CT scans, focusing on its accuracy and to evaluate the beneficial
role in daily practice.

Methods

Literature search was performed according to the PRISMA statement, and Embase, Medline
ALL, Web of Science Core Collection, Cochrane Central Register of Controlled Trials and Google
Scholar databases were searched. Studies were eligible when the use of Al for the detection
of fractures on CT scans was described. Quality assessment was done with a modified version
of the methodologic index for nonrandomized studies (MINORS), with a seven-item checklist.
Performance of Al was defined as accuracy, F1-score and area under the curve (AUC).

Results

Of the 1140 identified studies, 17 were included. Accuracy ranged from 69 to 99%, the F1-score
ranged from 0.35 to 0.94 and the AUC, ranging from 0.77 to 0.95. Based on ten studies, CNN
showed a similar or improved diagnostic accuracy in addition to clinical evaluation only.

Conclusions

CNNs are applicable for the detection and classification of fractures on CT scans. This can
improve automated and clinician-aided diagnostics. Further research should focus on the
additional value of CNN used for CT scans in daily clinics.



INTRODUCTION

The use of computed tomography (CT) in trauma care is substantially increasing. In the
Netherlands, over 2 million CT scans were made in 2019 and this number increases each year.!
Total-body CTs are increasingly used in acute trauma settings and can be more cost-effective
than standard radiological imaging.? Increased use of imaging strains radiologists, to the
point of creating a shortage of radiologist in hospitals.® Examining CT scans and radiographs
to detect and classify fractures can be time consuming, challenging, and poor inter-observer
variability among radiologists and (experienced) clinicians can be substantial.® Artificial
intelligence (Al) could play a big role optimizing workflows in the acute setting and allow
clinicians to spend their time more effectively.

Al can execute different tasks, ranging from searching the web to self-driving cars—tasks
that until a few years ago could only be performed by humans. Deep learning (DL) is a subset
of machine learning (ML) that uses mainly convolutional neural networks (CNNs).* CNNs are
combinations of artificial neuron layers with different units. These units operate like neurons of
our brain.® CNNs can learn to recognize discriminative features from data and assign importance
to various aspects in the image and to differentiate one from another. An example of data used
to train an ankle fracture CT CNN is presented in Supplemental Video 1. While most earlier Al
methods have led to applications with subhuman performance, recent CNNs are able to match
and even surpass the capacity of humans detecting certain fractures on radiographs, focusing
on isolated fracture types per model.> The strength of computers is their ability to evaluate a
vast number of examinations rapidly, consistently and without exhaustion.

When clinicians are aided by DL-based automatic fracture detection algorithms, the
accuracy of clinical diagnosis might improve and time to diagnosis reduced, which can be
useful in, among others, an emergency setting. Various studies have successfully applied
CNNs to detect fractures of various body parts on radiographs.’- The results in detecting
and classifying fractures on radiographs by CNNs are promising. However, only a few studies
have developed CNNs for the detection of fractures on CT scans. Therefore, we conducted this
systematic review to give an overview of studies using Al with CT scans to detect or classify
fractures. The aim of this study was to answer the following questions: 1) What is the accuracy
of a CNN in detecting fractures on CT scans? 2) Does the use of CNNs with CT scans improve
the diagnostic performance of clinicians?
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MATERIALS AND METHODS

Article selection, quality assessment and data extraction

A systematic literature search was performed according to the PRISMA statement™ (Fig. 1)
and conducted in the following libraries: Embase, Medline ALL, Web of Science Core Collection,
Cochrane Central Register of Controlled Trials and Google Scholar. The search strategy was
formulated together with a librarian (see appendix 1).

Studies identified through database searching -
Embase, Medline ALL, Web of Science Core
Collection, Cochrane Central Register of Duplicates removed
Controlled Trials and Google Scholar from 1946 to (n=70)
2021
(5 search terms)
(n=790)

A 4

A 4

Title and abstracts screened Title and abstracts excluded
(n=720) (n=651)

A 4

Full-text studies excluded

\ 4 (n=51)
Full-text studies assessed for eligibility .| Reasons:
(n=69) d - Llanguage 4
- Conference abstract 17

- No full text available 1
- Wrong study design 1
- Non orthopedic fractures 16

- NoCT 4
- NoAl 3
- Other 5

A 4

Studies included
(n=18)

Figure 1. PRISMA flowchart

All published articles were searched. After removing duplicates, titles and abstracts of
the potentially eligible articles were independently screened by two reviewers (LD, SS).
Subsequently, full-text screening was performed using the predefined criteria to check
eligibility. If the conclusion was inconsistent, a third reviewer was consulted (JP). Articles met
the inclusion criteria if Al was used to detect fractures on CT scans in an orthopaedic trauma
setting. The defined exclusion criteria were: review articles or letters, conference abstracts,
technique papers, studies using robots, animal and cadaveric studies, non-orthopaedic
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fractures and studies not published in English or Dutch. Covidence (Veritas Health Innovation,
Melbourne, Australia) was used for the screening process and full-text review.

The quality of all included articles was assessed by two independent reviewers (LD, SS).
In case of a disagreement, a third reviewer was consulted (JP). For the quality assessment, a
modified version of the methodologic index for nonrandomized studies (MINORS) instrument
was used, including the following items: disclosure, study aim, input features, ground truth,
dataset distribution, performance metric and Al model (Table 1). Studies with low scores on
three or more items were excluded. Standardized forms were used to extract and record data
(Microsoft Excel Version 16.21; Microsoft Inc, Redmond, WA, USA).

Outcome Measures

In this study, the primary outcome was performance of the CNNs used, measured by their
accuracy, F1-scores and area under the curve (AUC). Seventeen studies met the inclusion
criteria and were used to answer this research question. To answer the secondary question
in this study, ten studies comparing performance of the CNN to performance clinicians were
used. The data points collected from each study were: author, year of publication, anatomical
location of the fracture, Al models used (type), imaging direction of CT slices, output classes,
ground truth label assignment, number of patients and performance metric (e.g., accuracy,
AUC curve) (Table 2).

Output classes included fracture detection (i.e., fracture yes/no) and/or classification (i.e.,
OA/OTA classification). All studies described the detection of fractures by the CNN, and seven
studies also performed fracture classification.

Studies used accuracy, F1-score and AUC to measure the performance of the model. The
F1-score (2*((precision*recall)/(precision + recall)) is the harmonic mean of the precision
(positive predictive value) and recall (sensitivity) of the test, where it requires both to be high
for a favorable F1-score. The highest possible value is 1.0, indicating a perfect precision and
recall, and the lowest possible value is 0. If not assessed, the F1-score was calculated when
precision and recall were stated. The area under the curve (AUC) is a score to measure the
ability of a classifier to distinguish between classes. The score lies between 0.5 (a classifier
equal to that of chance) and 1 (an excellent classifier). Where possible, accuracy and/or F1-
scores were calculated to facilitate comparison between studies.
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Quality appraisal

The modified MINORS tool included the following items: disclosure, study aim, input feature,
ground truth, dataset distribution and performance metric (Table 1). Disclosure was reported
in all but two studies." 2 All studies clearly stated their study aim, model used and how
performance was measured. The input feature was not clearly specified in three studies." '*
% These studies did not mention what the inclusion and exclusion criteria were. Three studies
did not specify the ground truth (the reference standard used in Al)."'® " One study was
excluded after the quality assessment, because it scored too low on three items: disclosure,
input feature, and ground truth."

RESULTS

Included studies

The search yielded a total of 1140 articles. After duplicate removal, 720 abstracts were
screened. Sixty-nine studies were selected for full-text screening, of which eighteen remained.
No new eligible studies were identified through screening the reference lists. One study was
excluded after quality assessment, because the risk of bias was deemed too high due to
unclear reporting of disclosure, input feature and ground truth."” Seventeen studies were
used for analysis.

Description of studies

All seventeen studies used a CNN to detect and /or classify fractures on CT scans.'>8 Eight
studies addressed detection of rib fractures's '7.1%.20.22.25-27 three studies the performance for
detection'?' and classification’® of pelvic fractures, four for detection of spine fractures' *
.28 one for detection and classification of femur fractures?* and one of calcaneal fractures'.
Fourteen studies used two output classes (fracture yes/no).

One study on spine fractures used three output classes: completely displaced, incompletely
displaced and compression fracture." In addition, two studies used fresh, healing and old
fracture as output classes.?>2 In 12 studies, the ground truth for diagnosis and classification
of the fractures was the conclusion of two or more experts, who interpreted the CT scans
independently.'?-1%17-20.23.25-28 Qne study used radiology reports from routine care as ground
truth.?? Two studies did not specify how many experts provided the ground truth.?"2 Thereby,
two studies did not report the ground truth.’> ™ The number of patients included in the studies
ranged from 39" to 8529%° fractures.
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Primary outcome: the performance of CNN

The performance was defined in various ways among studies. Accuracy on detection and/or
classification was measured in eleven studies'?'®20.22.24.25 ranging from 69.4%'? to 99.1%'. Eight
studies used the F1-score to assess performance instead: in two the F1-score was assessed
for the classification of healing status? %, in one for displacement?', and in five' '8-20. 22 for
the detection of fractures. Additionally, we calculated the F1-scores in three studies'> 2% to
facilitate comparison. F1-scores ranged from 0.35 in Yacoub et al.?® to 0.94 in Meng et al.2° Four
studies reported the AUC as a performance metric'”2"2%25 ranging from 0.770% to 0.947". Zhou
et al.® reported the AUC on classification of challenging fractures compared to the other three
studies with more simple fracture detection. One study just reported a sensitivity of 92.9%.%

In Castro-Zunti et al.”, the accuracy and AUC scores of four different Al models were
compared for 612 patients. They found that the CNN model InceptionV3 achieved the highest
average accuracy of 96%, when the CT slices were divided into three classes (acute, old (healed)
and normal (non-fractured). In Yoon et al.? the data were divided into ten classes (based on
the AO/OTA classification?’) and the accuracy of the different numbers of output classes was
reported for 85 patients. Binary classification (no fracture vs fracture) achieved the highest
accuracy of 97%. When the data were divided into more classes (AO/OTA classification??), the
accuracy decreased to the lowest value of 90% for ten classes, as compared to the ground truth
by orthopaedic surgeons. Dreizin et al.”® reported the superiority of translational instabilities
(85%) over rotational ones (74%) on the accuracy and F1-score of their model™ for 373 patients.
Zhou et al.”® reported improved performance on 1020 patients using CTs combined with patient
information compared (accuracy for three different models: 85.2%, 90.4% and 88.5%) to just
CTs alone (accuracy for three different models: 78.8%, 81.3% and 73.9%).% In another—earlier—
study, Zhou et al.?® reported that the mean F1-score of healing rib fractures was the highest
and of old fractures the lowest (0.856 vs. 0.770).

In Fig. 2, the amount CTs for training, validation and testing are plotted against the
accuracy, with increasing accuracy from left to right. The study with the most CTs reported
an average accuracy of 92%." The highest accuracy of 97% was reported in a study' with
only 612 CTs.

In summary, the reported outcomes on accuracy (ranging from 69.4 to 99.1%), the F1-score
(from 0.35 to 0.94), the AUC (from 0.770 to 0.947) and the sensitivity (92.9%) were assessed
on different classifications, CNN models and training, validation and testing sets across the
included studies.
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Figure 2. Correlation between accuracy and total number of CTs

Secondary outcome: CNN and clinicians
Ten out of seventeen studies compared a CNN model to the diagnostic performance of
radiologists' 17.22.2%.25-27 or radiology reports'® 222, Seven' 17.22.23.25-27 gyt of these ten studies
compared the sensitivity of a CNN model to radiologists. In three studies'”?¢?7, the CNN model
solely or as an additional CNN model resulted in a higher sensitivity compared to the radiologist
alone. Three studies showed a similar sensitivity for CNN and radiologist,?> 2% and one'
showed a decrease in sensitivity with CNN. Four studies reported a significant reduction in
time to diagnosis when a radiologist was aided by a CNN.20-25-27

Two out of ten studies compared the accuracy of CNN vs clinicians.’® % In Meng et al.?,
junior radiologists significantly improved their accuracy when assisted by a CNN for detection
and classification of fractures. Experienced radiologists showed similar improvement.? In
Dreizin et al.’®, the model was equivalent in accuracy compared to radiologists. One study
showed that when CNN is combined with clinical reports, the number of missed diagnoses is
reduced by 88%."

In summary, the four studies' 202427 that reported the performance of a CNN as an aid
for the radiologist showed that CNN increases the performance of detection and classification
of fractures. Twelve' 15-20.22.24-27 gyt of seventeen studies concluded that the use of a CNN
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improved or could improve clinical care. In the remaining five studies, three studies'* 2" 2
recommend CNN as a second-stage interpretation to assist radiologists, in one performance
was inferior to clinical radiology reports?® and lastly, one did not report on improvement'.

DISCUSSION

In this systematic review, the results of several studies using Al for fracture detection and
classification—in particular convolutional neural networks (CNNs)—were analyzed. The
included studies reveal that CNNs show good performance in detecting and classifying various
fractures on CT scans. The use of CNNs may add value and efficiency to several components
of the skeletal imaging workflow in trauma care. The overall conclusion in most of studies was
that CNNs are applicable in aiding clinicians, by reducing both time to diagnosis and number of
missed diagnoses while improving the diagnostic performance. In addition, CNNs have proven
to be very consistent, in contrast to the high inter-observer variability among radiologists and
surgeons, when interpreting CT scans.® Due to the scarcity of studies reviewing the place of
CNNs in trauma CT imaging, the search strategy was very broad, and various libraries were
queried. In addition, this study looks at the comparison of CNN versus clinicians or CNN as an
assistant for clinicians.

This study should be interpreted in light of strengths and weaknesses. First, comparability
of the studies is limited, because some fractures may be easier to detect, have different
characteristics, and are in different surrounding anatomical structures than others. However,
the results of the studies show comparable performances across the board and this
heterogenicity did not affect answering our research questions. Secondly, different definitions
for the ground truth were used among the various studies. For example, ground truth labels
might be determined by various numbers of radiologists with different levels of expertise. An
important note is that all these reference standards are subject to human biases. Lastly, to
date, only a small number of studies have investigated the use of Al for fracture detection on
CT scans, in limited patient group sizes. This may overestimate the potential benefit of Al, and
therefore, future research should overcome this shortcoming. In addition, for the use of CNN
models in daily practice, these models need to be further developed, with greater training and
testing sets, external validation and prospective validation. However, if the beneficial effect of
Al in fracture diagnosing and treatment results in improvement, this might impede extensive
changes for the daily clinic. Strengths include the search of multiple databases, the use of a
modified MINORS that included CNN-specific factors such as the input feature, ground truth,
dataset distribution and performance metric. Future studies investigating Al on CTs for fracture
detection and classification should include a wide data base of training, validation and testing
sets, report demographic and diagnostic performance metrics, external validation of the CNN
model [30] and the investigation of more common fractures (for example, wrist and ankle).
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In general, for CNNs, it is assumed that the larger the dataset, the higher the performance.
Training with a small dataset is a major cause of overfitting and does not lead to suitable
generalization of performance. Due to the heterogeneity of the studies, straightforward
conclusions for the recommended size of datasets cannot be drawn. However, a clear
correlation for all fractures sites between accuracy and data size, with some studies reaching
perfect accuracy with small datasets of less than 1200 CT scans, seems to be lacking. Taking
this in consideration, in combination with the limited time of experts to provide high-quality
labels, we recommend a stepwise approach of small dataset that increases in increments until
adequate performance, or plateau is reached.

Most studies used the same base CNN architectures. Five studies used ResNet.!* 1518
22.25 They showed a similar accuracy, while investigating different anatomical locations. Two
studies used YOLOv3 and both showed similar F1-scores.?" % Two studies used the CNN model
VVG-16."2" The accuracy measured in these studies was divergent. Pranata et al.”® presented
a very accurate CNN model for detection of calcaneal fractures, while the accuracy found for
detection of pelvic fractures'? was significantly lower. A reason for this difference could be the
group size of both studies; 1931 calcaneal fractures vs. 103 pelvic fractures. Furthermore,
the stability of the pelvis is based both on bony and/or ligamentous injury, a much more
challenging task compared to finding cortical fractures.

RestNet (or a modified version) was the most used CNN network, with reported accuracies
between 73 and 98%. The best-performing model was reported by Raghavendra et al."® that
showed an average accuracy of 96.51%. This model was developed by the authors, however,
without external validation which warrants some caution in interpretation of the results.®
Less than half (6/17) of all studies reported the use of an external validation. To implement in
clinical practice, external validation of CNN models is crucial to explore transportability and
bias®® and will be the topic of future studies.

Other fields are ahead of orthopaedics with regard to the use of CNNs as computer-
aided detection. CNNs have been reported in oncology for: the classification of biopsy-proven
masses and normal tissue on mammograms®!, classification of skin cancer®? and the automated
detection of pathological mediastinal lymph nodes in lung cancer®. CNNs have been shown to
improve diagnostic performance in detection of lung nodes and coronary artery calcium on
CTs in lung cancer screening.® The use of CNNs in fracture detection and classification is only
following in the footsteps of much further developments in other specialties.

In conclusion, CNNs can detect fractures and important fracture characteristics on CT
scans, which may be used to guide treatment and optimize diagnosis of fractures. In addition,
computers can evaluate a vast number of examinations rapidly, consistently and without
exhaustion. If CNNs are trained well, using at least multiple experts to provide the ground
truth, this could reduce the inter-observer variability plaguing daily practice, and be a valuable
application in a trauma setting by reducing time to diagnosis. Further research is needed to
explore strengths and weaknesses of CNNs in an acute trauma setting.
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ABSTRACT

Purpose

Convolutional neural networks (CNNs) are increasingly being developed for automated fracture
detection in orthopaedic trauma surgery. Studies to date, however, are limited to providing
classification based on the entire image—and only produce heatmaps for approximate fracture
localization instead of delineating exact fracture morphology. Therefore, we aimed to answer
(1) what is the performance of a CNN that detects, classifies, localizes, and segments an ankle
fracture, and (2) would this be externally valid?

Methods

The training set included 326 isolated fibula fractures and 423 non-fracture radiographs.
The Detectron2 implementation of the Mask R-CNN was trained with labelled and annotated
radiographs. The internal validation (or ‘test set’) and external validation sets consisted of
300 and 334 radiographs, respectively. Consensus agreement between three experienced
fellowship-trained trauma surgeons was defined as the ground truth label. Diagnostic
accuracy and area under the receiver operator characteristic curve (AUC) were used to assess
classification performance. The Intersection over Union (loU) was used to quantify accuracy
of the segmentation predictions by the CNN, where a value of 0.5 is generally considered an
adequate segmentation.

Results

The final CNN was able to classify fibula fractures according to four classes (Danis-Weber A,
B, C and No Fracture) with AUC values ranging from 0.93 to 0.99. Diagnostic accuracy was
89% on the test set with average sensitivity of 89% and specificity of 96%. External validity
was 89-90% accurate on a set of radiographs from a different hospital. Accuracies/ AUCs
observed were 100/0.99 for the ‘No Fracture' class, 92/0.99 for ‘Weber B’, 88/0.93 for ‘Weber
C', and 76/0.97 for ‘Weber A'. For the fracture bounding box prediction by the CNN, a mean loU
of 0.65 (SD * 0.16) was observed. The fracture segmentation predictions by the CNN resulted
in a mean loU of 0.47 (SD * 0.17).

Conclusions

This study presents a look into the ‘black box’ of CNNs and represents the first automated
delineation (segmentation) of fracture lines on (ankle) radiographs. The AUC values presented
in this paper indicate good discriminatory capability of the CNN and substantiate further study
of CNNs in detecting and classifying ankle fractures.
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INTRODUCTION

Convolutional neural networks (CNNs) are increasingly being developed in orthopaedic trauma
surgery for automated detection and classification of fractures.”" General benefits include
the fact that they (a) do not suffer from mental or physical fatigue compared to clinicians,
(b) are consistent in their assessment because they are not limited by surgeon bias or poor
inter-surgeon reliability'>', and (c) can perform at or above the level of consensus agreement
from a panel of experienced surgeons and radiologists." > ' To date, most studies that have
developed CNNs for fracture detection and classification primarily apply models that classify
based on the entire or cropped input image." 57 10.1.16-18 |n contrast, newer computer vision
techniques can detect, segment (i.e. exact delineate the suggested location of the fracture (Fig.
5)), and classify fracture patterns.

Automated delineation of fracture lines gives us insight into what the algorithm ‘sees’,
and may help foster clarity for the as yet ill-defined role of artificial intelligence (Al) in the
field of computer vision for fracture recognition.’”2° The next level of CNN studies in our field
report detailed segmentation by a CNN of the second intact metacarpal? on plain radiographs,
vertebrae on computed tomography (CT)??, and femora on magnetic resonance imaging
(MRI)?*24, To the best of our knowledge, however, detailed segmentation of fracture lines on
radiographs has yet to be reported.

In 2020, Olczak and colleagues successfully applied a CNN for ankle fracture classification®
using the imagelevel classification model ResNet?, but without automated delineation of the
fracture. It remains the only fracture recognition paper for patients sustaining ankle trauma
to date. Ideally, CNNs should combine object detection with segmentation, and thus offer
localization and classification simultaneously—for example to better guide junior doctors during
their early learning curves by presenting an exact visual outline of the fracture line itself. In
addition, CNNs are often trained with large datasets without selecting cases that facilitate
the most efficient training rate for the CNN (i.e. learning rate). This results in a large portion
of unnecessarily labelled and/or annotated cases, because these contribute minimally to the
performance of the model.

Therefore, we aimed to develop a CNN that detects (i.e. fracture yes/no), classifies
(according to AO/OTA 44/Weber A, B and C%), and localizes (with exact delineation/
segmentation of an ankle fracture). The following questions will be answered in this paper:
(1) What are the diagnostic performance characteristics (accuracy, sensitivity, specificity) and
area under the receiver operator characteristic curve (AUC) of a CNN that classifies, localizes,
and segments a lateral malleolus ankle fracture?, (2) Is this CNN externally valid?, and (3) Does
application of a preliminary CNN that selects an appropriate training set result in an efficient
training rate for the CNN?
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MATERIALS AND METHODS

This study was approved by our Regional Review Board, according to the Declaration of
Helsinki under number 13991.

Guidelines

This study was conducted according to the Guidelines for Developing and Reporting Machine
Learning Predictive Models in Biomedical Research?” as well as the CONSORT-AI?® the SPIRIT-
Al#, MI-CLAIM®, and the CAIR checklist®".

Dataset

For this study, 12.000 radiographic ankle examinations with standard views (AP, Mortise and
Lateral) were retrospectively collected from our Level 1 Trauma Centre, between January
2016 and December 2020. Studies were filtered using keywords in radiology reports to create
an index database containing isolated fibular fractures and a non-fracture database (Fig. 1).
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Figure | — Database Flowchart
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Fig. 1. Workflow used to create the final convoluted neural network (CNN) for the classification of ankle
fractures. This involves a two-stage approach. An initial CNN was trained to select cases that were
considered difficult—for example, fractures that were hard to appreciate—for classification. Subsequently,
the final CNN was trained using these radiographs selected by the former CNN

Three independent observers manually reviewed and classified the radiographs according to
the AO/OTA 44/ Weber A, B, and C?%, thereby excluding malleolar fractures where the tibia was
involved. Any disagreements were resolved by discussion with a fourth independent senior
observer. Data curation further excluded radiographs with fractures and pathology other than
a fibular fracture, old fractures, presence of callous or cast, radiographs of poor quality (i.e.
radiographs of patients that would be sent back to radiology in clinic), open physes, radiological
views of insufficient quality, and presence of plates or screws.
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Preliminary CNN model

To improve efficiency in labelling and segmentation, a preliminary CNN was trained to
provide model-assisted labelling and annotations. For the annotation task, the DeepLab
V3+%2 architecture with MobileNet V232, pre-trained on ImageNet® data, was used. For the
classification task, a separate CNN with a MobileNet V2% backbone and a softmax classifier
were used. Training data for the preliminary CNN consisted of 147 radiographs with a fracture
and 228 without a fracture. Using Labelbox®, the images were manually labelled for visibility
of the fracture (easy, difficult, or impossible) and annotated by two independent observers
for the following: shape of tibia/fibula and fracture. Bounding boxes were created around the
borders of these respective annotations.

Fig. 2 This figure presents how the final convoluted neural network (CNN) goes from the input image (1)
to the final prediction (6). The region proposal network and backbone create countless bounding boxes
(2), where each box has a high likelihood of the presence of an object. Then, the region of interest (Rol)
crops the bounding boxes to fit fixed dimensions, in this case 256x256 pixels (3). These cropped images are
then used to simultaneously segment (4a) and classify (4b). Finally, the cropped images are then resized
to their original dimensions (5) and presented on top of the input image as predictions (6)

Final CNN model (Fig. 2)

For final model development, the Detectron2®* implementation of the Mask R-CNN was used.
The backbone of the Mask R-CNN model was set to the Microsoft Research Asia version
ResNet-50%, pre-trained on ImageNet®:. The ResNet-101 variation of the backbone was tested
but did not result in significant improvement. An instance segmentation model can segment
individual objects (i.e. bones) by combining object detection (bounding box) and semantic
segmentation (Fig. 3). The simplified explanation order in which Mask R-CNN does this is as
follows (Fig. 2): (1) The radiograph is fed into the CNN; (2) the backbone (ResNet-50) together
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with the Region Proposal Network (RPN) creates many bounding boxes with each proposal
being an object; (3) each region proposal is resized by Region of Interest (Rol) pooling to fit
fixed height and width dimensions of 256 x 256; (4a) Mask R-CNN classifies each pixel in a
region proposal to create a segmentation; (4b) simultaneously, Mask R-CNN uses object class
prediction on each region proposal; (5) predictions are reverted back to original height and
width dimensions and projected onto the output image.

WEIGHT BEARI R [ 56 !‘! WEIGHT BEARI R ] WEIGHT BEARI

Fig. 3 From left to right: Object detection, semantic segmentation, and instance segmentation

Training of final CNN model

The training set included 326 fracture and 423 non-fracture radiographs, which were labelled
and annotated in Labelbox.® Standard data augmentation (random cropping and horizontal flip
operations) was used to improve the generalization of the model. To reduce bias, cases were
re-weighted according to their prevalence. The annotated bounding boxes are used as the
Ground Truth for the RPN. Training was completed at 64 epochs (64 iterations of the complete
dataset) after 90 min. The training starts from an initial learning rate of 0.05 down to 1/10
every 1000 steps. Each step is commonly known as a mini-batch iteration; in this study, we
loaded 12 images per mini-batch.

Evaluation of final CNN model

Twenty-five patients of each class (AO/OTA 44/Weber A, B, C or No Fracture), were randomly
selected by the computer—and cross-checked with the 400 (by the preliminary CNN) selected
‘difficult’ images—for the internal validation set (also known as ‘test set'), to assess the
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CHAPTER 4

patient-level accuracy. The final prediction was the class with the highest combined prediction
value among all radiographic views. The ground truth was the consensus between three
experienced fellowship-trained trauma surgeons. Consensus was achieved on all cases;
however, ambiguous cases (low inter-observer agreement) were put in a clinically challenging
set and swapped with randomly selected patients to ensure objective measurement (high inter-
observer agreement) of model performance. After assessing performance using nonambiguous
cases (clinically easy internal validation), these were then put back into the internal validation
set to assess the effect of clinically challenging cases (clinically challenging internal validation)
on performance of the model.

eber_b (gt) eber_b (gt)

Fig. 4 From left to right: Ground truth (gt) versus prediction (pred), area of union (gt+pred), and area
of overlap

To assess transportability and generalizability of the model, external validation was performed
using 167 cases from our second Level-1 Trauma hospital in the Netherlands with the same
methodology as for the internal validation.

Due to a difference in protocol, these did not contain mortise views.

For assessment of the image-level accuracy, Intersection over Union (loU; also known
as the Jaccard index, Fig. 4) was used to quantify accuracy of the segmentation predictions
by the CNN, where 0 indicates no overlap at all and 1 a perfect overlap. Due to the complex
nature of CNNs, it cannot be assumed that predictions will perfectly match the ground truth;
therefore, loU is used as it is an indicator of overlap. Generally, an loU > 0.5 is considered a
good prediction.3&3?
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Statistical analysis

Accuracy (defined as the percentage of cases correctly predicted by the CNN), sensitivity,

specificity, and AUC were calculated for each (non) fracture class. The AUC reflects the

discriminative ability of the CNN to separate classes, an AUC of 1.0 corresponds to a prediction

with perfect discriminatory performance, whereas 0.5 indicates a prediction equal to chance.
Statistical analysis was performed using Python 3.9.0 [Python Software Foundation,

Beaverton, United States] with the modules: pandas, cv2, NumPy, sklearn, and plotly.

RESULTS

Test set—performance of CNN model 2 on clinically ‘Easy’ cases (Fig. 5)

The final CNN was able to classify fibula fractures according to four classes (Danis-Weber A,
B, C and No Fracture) with AUC values ranging from 0.93-0.99 and 89% accuracy (Tables 1,
2 and Fig. 5). Best accuracy was observed for the ‘No Fracture’ class with 100% and ‘Weber
B’ with 92%. Accuracies of 88% and 76% were observed for classes ‘Weber C' and ‘Weber
A, respectively. Specificity, however, was 100% for both of those two fracture classes. In
the ‘Weber C’ group, three cases were misclassified of which two were subtle fractures that
were picked up on the lateral radiograph but missed or misclassified as ‘Weber B’ on the
anteroposterior and mortise views, and one was a steep oblique fracture line misclassified
as ‘Weber B'. From the ‘Weber A’ group, the six patients that were misclassified, five had
transverse fractures at the level of the ankle joint (the line between ‘A’ or ‘B’ classification),
and one was a subtle fracture. Two examples of misclassifications are shown in Fig. 6.

Test set—performance of CNN model 2 on clinically ‘Difficult’ cases

With reintroduction of ambiguous cases, AUC values ranged from 0.90 to 0.98 and accuracy
decreased by 4% to an average of 85%. Performance metrics per class are given in Tables
1 and 2. Besides minor changes in other classes, the ‘Weber C' class was most affected,
where accuracy decreased from 88% (22/25) to 72% (18/25). Compared with the initial internal
validation set, the ‘Weber C’ class had two extra ‘Weber B’ misclassifications. These occurred
with a steep oblique fracture line, and two extra misclassifications as ‘No Fracture' occurred
when there was a presence of high ‘Weber C' fracture.
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Table | — Combined Radiograph Confusion Matrix and Accuracy

Performance on Clinically ‘Easy’ Cases

Predicted
Weber A Weber B Weber C No-Fracture Accuracy
Weber A 19 3 0 3 76%
Weber B 0 23 0 2 92%
Weber C 0 2 22 1 88%
No-Fracture 0 0 0 25 100%

Performance on Clinically ‘Difficult’ Cases

Predicted
Weber A Weber B Weber C No-Fracture Accuracy
Weber A 19 2 0 4 76%
Weber B 0 23 0 2 92%
Weber C 0 4 18 3 72%
No-Fracture 0 0 0 25 100%

Table Il — Sensitivity, Specificity and AUC per class

Performance on Clinically Easy Cases

Sensitivity Specificity AUC
Weber A 76% 100% 0,93
Weber B 92% 93% 0,97
Weber C 88% 100% 0,99
No-Fracture 100% 92% 0,99

Performance on Clinically Difficult Cases

Sensitivity Specificity AUC
Weber A 76% 100% 0,93
Weber B 92% 93% 0,97
Weber C 72% 100% 0,9
No-Fracture 100% 88% 0,98

Test set—accuracy of segmentation (i.e. delineation of the fracture line) (Fig. 7)
Quality of the predicted fracture segmentations by the CNN was quantified by the loU (Figs.
2 and 7). For the fracture bounding box prediction by the CNN, a mean loU of 0.65 (SD0.16)
was observed. The much more challenging fracture polygon segmentation predictions by the
CNN resulted in a mean loU of 0.47 (SD * 0.17).
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External validation of CNN model 2
On the clinically ‘'easy’ external validation set without ambiguous cases, the model achieved
AUC values ranging from 0.83 to 0.95 and an overall accuracy of 90% (Table 3).

,le;eber_a (pred

WEIGHT BEARING

WEIGHT BEARING

Fig. 5 Selection of correct classifications by the final convoluted neural network

Best accuracies of 99% and 92% were achieved for the ‘No Fracture' and ‘Weber B’ classes,
respectively, while the ‘Weber C' and ‘Weber A’ classes resulted in the least accurate
predictions with 71% and 64%, respectively.

When ambiguous cases were introduced, the model achieved AUC values ranging from
0.84 to 0.92 and accuracy to 89%. Compared to the former external validation, all fracture
classes’ accuracies were affected by 1-2% (Table 3). A similar pattern to the internal validation
was observed; the model struggled with ambiguous cases; however, in contrast to the internal
validation, no specific class was more affected than others.
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Table Ill — External Validation Performance

Clinically ‘Easy’ External Validation

Accuracy Sensitivity Specificity AUC

Weber A 64% 64% 100% 0,88
Weber B 92% 92% 98% 0,98
Weber C 71% 71% 100% 0,83
No-Fracture 99% 99% 86% 0,9

Clinically ‘Difficult’ External Validation

Accuracy Sensitivity Specificity AUC

Weber A 62% 62% 100% 0,86
Weber B 90,0% 90,0% 96% 0,92
Weber C 70,0% 70,0% 100% 0,84
No-Fracture 99% 99% 89% 0,89

AO/OTA 44/Weber A misclassified as a 44/Weber B

AO/OTA 44/Weber C misclassified as a No Fracture

Fig. 6 AO/OTA 44/Weber A misclassified as a 44/Weber B, AO/OTA 44/Weber C misclassified as a No
Fracture

68



DISCUSSION

To date, studies on the clinical application of Al in the field of computer vision have not deployed
CNNs to automatically delineate fractures, which can reduce the black box effect as well as
aide less experienced doctors who are still in their early learning curve. Moreover, external
validity of current CNNs for fracture recognition in orthopaedic trauma is scarce.? In this study,
we developed a CNN that can detect, classify, and create detailed segmentations of fracture
lines in ankle fractures (AO/OTA 44/Weber A, B and C) with an overall accuracy of 89%. In
addition, it was found to be externally valid on radiographs from Level | Trauma Centre on a
different continent, with an average accuracy of 89-90%. We used a preliminary CNN to select
fractures that were difficult to appreciate, aiming for the most efficient training rate per image
for the final CNN.

As with any study, this information must be interpreted with respect to its scientific
strengths and weaknesses. One limitation is that existing classification systems suffer from
varying inter-observer reliability, affecting performance of the model." Another stems from
evaluating the CNN using retrospective instead of prospective data, although the internal and
external validation were collected from multiple years and thus simulate clinical practice.
Also, as training data did not include fractures with concomitant joint dislocations, the CNN
is unlikely to recognize this significant fracture subset. These study shortcomings, however,
are counterbalanced by several notable merits, including that this is the first paper in the
field of orthopaedic trauma to describe a pixel perfect segmentation of fracture lines on
plain radiographs—compared to rough predictions using heat/activation maps described in
literature—and use a preliminary CNN to select cases to train the final CNN model. Another
strength is external validation of the CNN in assessing generalizability and possible bias of
the model on data different than that used for development. Moreover, labelling of the internal
validation set was done by three independent experienced surgeons, and a consensus was
used as the ground truth. Finally, the Mask R-CNN [40] used in this investigation represents
a state-of-the-art CNN that accepts entire radiographs as input image for the detection,
classification, and segmentation tasks, whereas commonly used CNN models often warrant
cropping and are more difficult to implement in clinical practice.

In 2020, Olczak et al. [8] were the first and the only ones thus far to report the use of a
CNN in classifying ankle fractures. The current study adds to our knowledge by presenting
a CNN that was developed to create a detailed localization and segmentation of fracture
lines on radiographs. This may improve clinical reasoning and diagnostics by giving junior
clinicians a visual guide and simultaneously reduces the ominous ‘black box’ effect, which
facilitates a feedback loop for an ongoing learning curve. Furthermore, this study reports an
improvement in the discriminatory performance (AUC values) compared to the study from
Olczak and colleagues [8], using less than a fourth (approximately 250 cases) of the 1064 cases
for the corresponding classes without tibial involvement (AO/OTA 44A1, B1, B2.1 and C1.1).
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Accuracy cannot be compared as the latter study did not report an accuracy of their CNN in
classifying ankle fractures. As labelling and annotating is very labour-intensive and qualified
experts’ time is often limited, training an initial CNN to select optimal cases for training the
CNN increases efficiency.

Although accuracy and the AUCs were high, the CNN misclassified 11 out of 100 patients
in our test set (Figs. 5, 6, and 7). It should be noted, however, that the AUC is close to 1
(indicating almost perfect discriminatory performance), ranging from 0.93 to 0.99. Accuracy
depends greatly on individual cases in the internal validation set. Interestingly, the same
cases considered ambiguous by surgeons (i.e. poor inter-observer reliability) were also
the ones that CNN had difficulties with. Since CNNs can only be as good as their training, it
should be noted that without an absolute truth (e.g. a CT scan), current computers can only be
trained to approach the performance of surgeons—but they cannot surpass it. If one defines
the ground truth as a consensus agreement, however, at least some inherent surgeon bias
can be eliminated. The AO/OTA 44/Weber A and C classifications were most susceptible for
misclassification, together accounting for nine of the 11 errors. The recognition of higher Weber
C-type injuries might be limited by that the fact that the CNN appears to have no positional
awareness and seems to classify based purely on fracture configuration. Another explanation
might be the alternative CNN shortcoming in trying to detect features that exist at the margin
of an image; similarly, CNNs are likely dependent on the variability in what gets captured in a
given radiograph, since for multiple reasons this clearly varies image to image. Since Weber C
injuries can have dynamic instability or exist at a level not identified on non-stressed or more
limited exposure radiographs, it makes sense that this is where these algorithms seems to
fall short and demonstrate room for improvement. For the segmentation task, the average loU
value for the bounding boxes was good, even though one study suggests that loU is optimal for
round shapes, but not for elongated ones*' such as those used in this study. As expected, the
highly variable fracture line segmentations resulted in a lower loU compared to the bounding
box. However, the average loU was still close to 0.5, suggesting an overall accurate fracture
line segmentation despite the great variation in fracture configurations.

It is worth noting that accuracy was the highest when detecting a lack of fracture, doing so
with 100% accuracy. Thus, while much of the efforts of this study were to distinguish between
various fracture patterns, the ability of the same process to exclude fracture is inherently
useful to those working in the emergency or urgent care setting who simply need guidance
as to when to seek additional orthopaedic consultation.
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Fig. 7 Segmentations and classifications of the final convoluted neural network for AO/OTA 44/Weber A
(top), B (middle), and C (bottom)

Performance is often reduced when assessed with an external validation set* %2, as
there are many observer and machine-dependent variances between hospitals. Therefore,
geographical external validation is a stringent and crucial test towards clinical implementation
of these models. Enabling the external validation set to usually have two views (anteroposterior
and lateral) instead of three (mortise) improved classification of fractures that were only
detected on one of the views, with a caveat that the CNN has to be more confident of its
‘Fracture’ classification than its ‘No Fracture' classification. A notable distinction here is that
when there were three views and the fracture was seen on the lateral view but not on the
anteroposterior and mortise, it was always classified as ‘No Fracture'.

In summary, this early work on automated detection in orthopaedic imaging demonstrates
remarkable future potential despite several shortcomings noted in its current level of
development. In conclusion, even though object detection has been employed for certain other
types of fractures and imaging modalities, this study presents the first automated segmentation
of fracture lines on ankle radiographs. The accuracy and AUC values presented in this paper
certainly fortify a role for CNNs in detecting and classifying ankle fractures. Moreover, using
a preliminary CNN to identify cases resulted in a network that was accurate enough to be
externally valid in another hospital, surely important for reducing the workload of creating
high-quality data for training of CNNs.
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ABSTRACT

Background

Advances in medical imaging have made it possible to classify ankle fractures using Artificial
Intelligence (Al). Recent studies have demonstrated good internal validity for machine learning
algorithms using the AO/OTA 2018 classification. This study aimed to externally validate one
such model for ankle fracture classification and ways to improve external validity.

Methods

In this retrospective observation study, we trained a deep-learning neural network (7,500 ankle
studies) to classify traumatic malleolar fractures according to the AO/OTA classification. Our
internal validation dataset (IVD) contained 409 studies collected from Danderyd Hospital in
Stockholm, Sweden, between 2002 and 2016. The external validation dataset (EVD) contained
399 studies collected from Flinders Medical Centre, Adelaide, Australia, between 2016 and 2020.
Our primary outcome measures were the area under the receiver operating characteristic
(AUC) and the area under the precision-recall curve (AUPR) for fracture classification of AO/
OTA malleolar (44) fractures. Secondary outcomes were performance on other fractures visible
on ankle radiographs and inter-observer reliability of reviewers.

Results

Compared to the weighted mean AUC (WAUC) 0.86 (95%CI 0.82-0.89) for fracture detection in
the EVD, the network attained wAUC 0.95 (95%Cl 0.94-0.97) for the IVD. The area under the
precision-recall curve (AUPR) was 0.93 vs. 0.96. The wAUC for individual outcomes (type 44A-C,
group 44A1-C3, and subgroup 44A1.1-C3.3) was 0.82 for the EVD and 0.93 for the IVD. The
weighted mean AUPR (WAUPR) was 0.59 vs 0.63. Throughout, the performance was superior
to that of a random classifier for the EVD.

Conclusion

Although the two datasets had considerable differences, the model transferred well to the EVD
and the alternative clinical scenario it represents. The direct clinical implications of this study
are that algorithms developed elsewhere need local validation and that discrepancies can be
rectified using targeted training. In a wider sense, we believe this opens up possibilities for
building advanced treatment recommendations based on exact fracture types that are more
objective than current clinical decisions, often influenced by who is present during rounds.
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INTRODUCTION

With artificial intelligence’s (Al) growing success in image analysis, Al interventions are rapidly
being developed and applied in medical diagnostics.' Many studies have reported promising
results, reaching close to perfect accuracy on basic pathology detection tasks, illustrating that
accuracy in elementary pathology detection should be relatively easy to attain. The promise of
Al interventions lies in their ability to solve complex tasks in different scenarios. For example,
classifying fractures into meaningful features could give clinical guidance, drive treatment
decision-making, or predict clinical outcomes. However, as researchers develop models under
controlled conditions, few have reproduced their results.

A meta-analysis by Liu et al. reported the lack of external validation in deep learning [2].
For example, a systematic meta-analysis by Oliveira e Carmo et al. found 36 papers using
deep learning for orthopedics. Only three were externally validated, i.e., tested on independent
data from a different site®“%¢ (See Supplement 1, Table S1.) Similarly, a systematic review of
orthopedic machine learning models predicting surgery outcomes by Groot et al. found that
only 10/59 studies had externally validated their models.” There are currently many initiatives
to improve the quality of reporting Al studies in medicine, for example, via checklists for
consistent and relevant reporting and external validation." ® For a predictive model to be
helpful, it must work and be tested in clinical environments other than what the model has
been trained on - also called external validation - and thus be generally applicable.

There are three major classification systems for ankle fractures. Previously, we showed
that deep-learning models can classify ankle fractures according to the AO Foundation/
Orthopedic Trauma Association (AO/OTA) classification. The AO/OTA standard classifies
fractures based on their visual appearance in radiographic examinations, making it well-suited
to Al image classification. This classification is influenced by the very popular Lauge-Hansen
(LH) system, which is widely used in clinical practice and categorizes fractures based on the
injury mechanism. The LH system'’s reliance on such non-visual factors presents challenges
for this study, where the injury mechanisms were missing. At the same time, the AO/OTA
classification can be seen as an extension of the Danis-Weber classification.

We have previously reached a model performance of weighted average area under the
receiver operating characteristic curve (AUC and wAUC) 0.90 (95%Cl 0.82-0.94)° using internal
validation test data - data from the same site as the test data. Given that such a model aims
to facilitate classification and decision-making in an emergency setting, we needed to validate
its performance in the clinic, not in the training setting. This paper examines the external
validation of an Al model for classifying ankle fractures according to the AO/OTA standard.
External validation consists of applying a model to independent data from a site different from
the one used for training. It aims to see how relevant and generalizable a model is in a clinical
context. Our primary aim was to study the effect of transferring a model to a different setting,
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i.e., the model’s external validity, and to study ways to improve the external validity of a machine
learning model. Our secondary aim was to explore the AO/OTA classification more broadly.

MATERIAL AND METHODS

The study was a retrospective external validation cohort study.

Ethics approval and consent to participate
Ethical approval for the collection of Flinders/external validation dataset was obtained from
the Central Adelaide Local Health Network Human Research Ethics Committee (CALHN HREC)
reference number: 13991, Authorization date: 21 December 2020. In accordance with the ethical
permit, no individual or informed consent from participants was required. In accordance with
the specific consent for inclusion into this study, the data was not considered patient data.

Ethical approval for the Danderyd/internal validation dataset was obtained by the Regional
Ethics Committee for Stockholm, Sweden (Dnr. 2014/453-31/3, April 9, 2014). According to the
ethical approval, no individual or informed consent from participants was required, as the data
did not constitute human data after anonymous collection.

Ethical approval to use the external dataset for this study was also obtained from the
Swedish Ethical Review Authority, Sweden (Dnr. 2023-07151-01).

The need for informed consent for the use of the data for the study waived. The data was
anonymous radiographs without personal identifiable information, it would not be possible to
identify individuals and informed consent was waived.

Data collection and pre-processing
Training and internal validation dataset (IVD)
The training data came from a retrospective cohort of trauma radiographs (initial imaging
performed at the emergency department at the time of injury) collected from Danderyd
University Hospital (Stockholm, Sweden) between 2002 and 2015. This level 2 trauma center
had a referral area of approximately 350,000 people during that period. The data was collected
anonymously and only coded with a unique patient identifier, but the radiologist report was
included. No injury or population data (such as age, gender, trauma mechanism, etc.) was
collected. We used the radiologist reports to generate initial fracture/no fracture labels. These
labels have been improved over successive studies through manual review by radiologists
and orthopedic consultants.” ' ™" All examinations visualizing the ankle were included, and
only pediatric studies (open physis) were excluded because they are classified differently.
Four hundred patients (409 exams, including all available views visualizing the ankle)
were previously selected for the internal validation dataset (IVD). Our previous study had a 2/3
bias towards fractures in the VD to ensure sufficient fractures to classify and compare rarer
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fractures. We did not specify the fracture type, so tibia, malleolus, fibula, or foot fractures were
included.® As part of active training, we added 2664 fractures to the training dataset to align it
more with the EVD distribution. We used model-based selection, i.e., the model screened ankle
studies from the Danderyd dataset and selected cases where the model flagged categories
of interest or where the probability for the predicted class was low, i.e., had high uncertainty.
These were then manually reclassified. No patient was present in both the training and IVD
set. See Fig. 1. For training details, see Supplement 2, available online.

Flinders
Danderyd oo
dataset Fosnted
Ankle imagin 2/3 fracture
9ing 1/3 not fracture
5495 400 patients
studies ™23 fractures 409 studies 399 studies
\ N y)
2664 l l
studies ‘ a Review Review
Excluded and and
» || 0 studies consensus consensus
N session session
\J l l
Training data Internal External
|| 7750 studies validation validation
\\ ) || dataset (IVD) dataset
g (EVD)

Fig. 1 Study flowchart

External validation dataset (EVD)
The external validation dataset (EVD) was a subset of 12,000 radiographic ankle examinations
collected from Flinders University Medical Centre (Adelaide, Australia), a level 1 Trauma
Centre, between 2016 and 2020.

Studies were filtered using keywords in radiology reports to create an index database
containing isolated fibular and lateral malleolus fractures and a non-fracture database. While
only trauma radiographs were included, this included one-week follow-ups and weight-bearing
images. Projections were three standard views (AP, mortise, and lateral). Exclusion criteria
were any pathology other than a fibula or lateral malleolus fracture, old fractures, callous
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or cast presence, radiographs of poor quality, open physes, radiological views of insufficient
quality, and the occurrence of plates or screws were also excluded.

Three hundred ninety-nine examinations were randomly selected from the Flinders
dataset and provided as an external validation dataset (EVD) for this study, with a 2/3 selection
bias towards studies containing a fracture. The Flinders set was anonymized and provided
without reports, injury, or population parameters'? (Table 1).

Table 1 Properties of the internal validation dataset (IVD) and external validation dataset (EVD)

Dataset properties IVD EVD
Cases 409 399
Projections Y4 3
Focus Ankle study Lateral malleolar fracture
Timing Initial imaging Initial imaging, one-week
follow-up, weight-bearing
Implants & casts Yes No
Open physes No No
Excluded on imaging quality None Insufficient quality views
Poor quality images
Severely displaced fractures
Fracture Cases Percent (%) Cases Percent (%)
Base 253 61,9% 277 69,4%
Malleolar® 216 52,8% 274 68,7%
Fibula® 37 9,0% 3 0,8%
Previous fracture/other® 134 32,8% 15 3,8%
Foot® 57 13,9% 2 0,5%

Numbers are based on ground truth labelling by reviewers after the consensus session

2Distinguishing between isolated fibula and lateral malleolar fracture can be subjective. In the absence
of talar dislocation, we reviewed the radiologist’s report for indications of direct trauma. Additionally,
we assessed for specific characteristics, such as the presence of more transverse fractures, which are
more common in isolated fibula fractures, as opposed to C-category fractures that often extend beyond
3 cm. While these criteria are not entirely objective, we aimed to apply them consistently across cases
to minimize variability

Denotes fractures and outcomes that were flagged as fractures during study selection but are secondary
outcomes

Annotation protocol for the EVD

The four reviewers (FIJ, EA, JD, and MG) were consultant or senior consultant orthopedic
trauma surgeons. All underwent a training session to ensure familiarity with the labeling
platform (the Raiddex platform developed by DeepMed AB) and agreement on the AO/OTA
2018 ankle fracture classification. Each reviewer labeled the EVD independently at the original
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image resolution. Labeling was distributed so that three reviewers examined each study
independently. After the independent labeling, we held a consensus session to review the
cases where there were discrepancies between observers, and a majority vote decided the
final classification. The result was the ground truth EVD. We have previously established the
annotations for the training data and the IVD ground truth.’

Model and evaluation

Image pre-processing, network architecture (modified ResNet-based' neural network model
developed in PyTorch), parameters, training, and output evaluation were consistent with Olczak
et al. 2021" and identical for the IVD and the EVD. The network scaled down exams to reduced-
size images for training and assessment. The network was always trained for 300 epochs,
and we did not stop early.

The software used in our previous study was unsuitable for this study’s experiments.
Instead, we used an identically trained network on the same IVD. Due to the random nature
of model training, the exact performance for the initial IVD varied slightly from our previous
study. After initial evaluation, we were dissatisfied with the model performance and noted a
notable difference in the distribution of Type A fractures. As part of active learning, we: 1)
expanded the training data with previously unlabeled ankle imaging from the training site,
focusing on type A fracture. These were labeled by FW (medical student) and JO (medical
doctor). We could not preselect fracture type among those previously unclassified images.
2) we actively focused on Type A fracture prediction edge cases. Fractures in the training set
classified as Type A with the lowest probability or where type A fracture was the second most
likely type (but another type won out) were rigorously reexamined after each training epoch
by MG (senior orthopedic consultant). By focusing on the lowest probability type A fractures
and almost type A, we hoped to reduce the uncertainty in the type A classes. In addition to
adding more training data, we trained the model on different image resolutions. We report the
results for the 400 x 400-sized images as the primary outcome. At higher resolutions, there
was no performance increase.

The model classified studies by examining all available images individually and
independently for each possible class. There were 39 outcomes for ankle (AO/OTA 44) fractures
and, as many classes for fibula (4), tibial (43), foot fractures, and one additional for fracture-
yes/no. The model selected the most probable AO/OTA class (top-1 classification) for the series
outcome.’ Class outcomes, i.e., fracture yes/no, type (A-C - i.e., Danis-Weber), group (A1-C3),
and subgroup (A1.1-C3.3) are determined independently of each other. We trained a network
without pre-training, then used the resulting trained Al model to classify the IVD and EVD and
compared the results to the ground truths. See Supplement 2 (available online) for details on
the network, modeling parameters, and all possible outcomes for the network. We report our
findings per the CAIR checklist' and follow the TRIPOD statement'.
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Statistical analysis

Primary outcomes

The area under the receiver operating-characteristic curve (AUC) and the area under the
precision-recall curve (AUPR) for malleolar fractures (AO/OTA 2018 bone-location 44). Top-1
classification is used for determining outcomes for each level, i.e., fracture/ vs. no fracture,
type 44A-C, group 44A1-44C3, and subgroup 44A1.1-44A3.3, i.e., 40 possible outcomes for ankle
fractures. While some outcomes overlap, each was decided individually. We used frequency-
weighted means as summary statistics [1] and calculated 95% confidence intervals (Cl) with
bootstrapping. We do not report outcomes with single cases, as it is impossible to calculate
Cl for these outcomes.

Although AUC and accuracy are often used to report performance in CNN models, a
multi-label classifier—such as that used in this study—benefits from a metric that can more
accurately capture its inherent class imbalance between the many groups.

For the AUPR, a random classifier will perform proportionally to the number of positive

outcomes for that class, i.e., AUPR = (number of cases for the class/total number of cases).

random
If a dataset consists of 10% of class X, a random classifier should deliver an AUPR of 0.1 for
class X, and anything above that is better than chance.”® Therefore, we also report when the
AUPR outperforms a random classifier - i.e. when the lower 95%Cl bound is better than the
random classification. We only measured the top-1 performance (i.e., no points for being close
to the correct answer).

After enhancing training (with active learning, additional training data, and increased
image resolution), we only tested the model (on the EVD and VD) once for each resolution.
This was done to eliminate the risk of overfitting the EVD.

We compare the classifier's performance on both datasets and report according to the

Clinical Al Research (CAIR) and TRIPOD checklists.

Secondary outcomes

Compare the classification between observers (before the consensus session) and performance
for non-malleolar fracture outcomes. We use Cohen’s kappa to compare two reviewers
and intra-class correlation (ICC) to compare all reviewers. We use ICC and kappa as rough
indicators of the difficulty of the classification task.

RESULTS

Compared to the IVD, the EVD had fewer displaced fractures and no casts or implants. The
EVD included studies labeled “weight-bearing,” indicating that these were not fresh injuries
at the time of examination (i.e., from the emergency department at the time of injury). The
EVD had three views per study, while the IVD had four or more views. The IVD had 216 ankle
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fractures out of 409 cases (53%), compared to 274 out of 399 ankle fractures (69%) in the EVD
set (Table 1). The fracture incidence was similar, and type B fractures dominated both settings.
Type A fractures were three times more prevalent in the EVD. There were more non-malleolar
fractures in the IVD than in the EVD (Table 2 and Table 3). The EVD also had less severe
fractures, e.g., more B1 fractures, less B3, and very few fibula fractures.

Table 2 Prediction outcomes for the internal validation dataset (IVD)

DANDERYD - Internal validation set (IVD) (409 cases)

Malleolar fractures
Cases AUC (95% CI) AAUC AUPR (95% CI) AAUPR

Fracture 216 0.95 (0.94-0.97) 0.03 0.96 (0.94-0.97) 0.03
L4A

Base 32 0.84 (0.76-0.92) 0.04 0.46 (0.11-0.35) 0.23

L4AT 22 0.84 (0.76-0.92) -0.03 0.37 (0.08-0.29)° 0.19
44ALT 6 0.88 (0.79-0.97) -0.01 0.04 (0.01-0.10) 0.00
44A1.2 7 0.84 (0.69-1.00) -0.02 0.30 (0.01-0.21) 0.22
44A13 9 0.82 (0.69-0.96) 0.03 0.18 (0.01-0.22) 0.1

44A2 7 0.99 (0.97-1.00) 0.15 0.52 (0.01-0.47) 0.28
44A2.1 5 0.99 (0.97-1.00) 0.09 0.41 (0.00-0.56) 0.15
44A2.3 2 0.99 (0.99-1.00) 0.14 0.25 (0.00-0.04) 0.23

4L4A3 2 0.95 (0.86-1.04) -0.02 0.08 (0.03-0.17)° 0.01
44B

Base 137 0.96 (0.93-0.92) 0.04 0.92 (0.88-0.95)° 0.05

44B1 67 0.95 (0.93-0.98) 0.05 0.77 (0.67-0.86) 0.14
44B1.1 39 0.90 (0.87-0.94) 0.07 0.37 (0.25-0.51) 0.06
44B1.2 26 0.94 (0.91-0.97) 0.07 0.40 (0.22-0.60)° 0.15
44B1.3 2 0.96 (0.90-1.02) 0.04 0.06 (0.01-0.23) 0.03

44B2 38 0.86 (0.80-0.92) 0.01 0.40 (0.25-0.56) 0.04
44B2.1 20 0.91 (0.85-0.97) 0.05 0.37 (0.20-0.55) 0.14
44B2.2 16 0.88 (0.77-1.00) -0.01 0.35 (0.15-0.53)° 0.13
44B2.3 2 0.87 (0.68-1.07) -0.05 0.03 (0.00-0.11) 0.00

44B3 32 0.92 (0.89-0.96) 0.06 0.50 (0.27-0.59) 0.03
44B3.1 12 0.90 (0.83-0.97) 0.04 0.18 (0.06-0.34) 0.02
44B3.2 13 0.92 (0.88-0.96) 0.08 0.20 (0.08-0.35)° -0.04
44B3.3 6 0.96 (0.93-0.99) 0.02 0.16 (0.03-0.30)- 0.06
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Table 2 Prediction outcomes for the internal validation dataset (IVD) (continued)

DANDERYD - Internal validation set (IVD) (409 cases)

Malleolar fractures
Cases AUC (95% CI) AAUC AUPR (95% CI) AAUPR
44C
Base 47 0.93 (0.89-0.97) 0.05 0.73 (0.61-0.82)° 0.20
44C1 24 0.90 (0.84-0.97) 0.05 0.42 (0.27-0.63) 0.18
44C1.1 17 0.93 (0.87-0.99) 0.03 0.39 (0.21-0.60)2 0.16
44C1.2 5 0.86 (0.75-0.97) -0.01 0.05 (0.01-0.12) 0.01
44C1.3 2 0.93 (0.83-1.02) 0.02 0.04 (0.01-0.14) 0.02
44C2 18 0.93 (0.90-0.97) -0.02 0.40 (0.16-0.58) -0.05
44C2.1 6 0.86 (0.74-0.99) -0.08 0.22 (0.01-0.51) 0.07
44C2.2 3 0.99 (0.99-1.00) 0.08 0.32 (0.00-0.62) 0.28
44C2.3 9 0.92 (0.88-0.96) 0.03 0.11 (0.04-0.21)> 0.00
44C3 5 0.98 (0.97-1.00) 0.07 0.29 (0.02-0.67)° 0.21
44C3.1 3 0.96 (0.90-1.03) 0.29 0.16 (0.00-0.50) 0.15
Weighted mean AUC A Weighted mean AUPR A
0.93 +0.04 0.65 +0.08

Reported with the area under the receiver operating characteristic curve (AUC) and the area under the
precision-recall curve (AUPR). The outcome measures for the most important groups. 95% confidence
intervals (Cl) are computed using bootstrapping. The “base case” corresponds to the Danis-Weber
classes (AO/OTA 44A, 44B, and 44C). Outcomes with ¢ 1 instance are not reported. Radiographs at
400*400px resolution. AAUC and AAUPR was the difference in AUC and AUPR comparing the actively
trained network to the pre-active training network at 256 x 256px resolution. Increasing resolution prior
to active learning had no effect on performance

2Indicates that the AUPR with 95% Cl exceeds random AUPR
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Table 3 Prediction outcomes for the external validation dataset (EVD)

FLINDERS - External validation dataset (EVD) (399 cases)
Malleolar fractures (44)

Cases AUC (95% CI) AAUC AUPR (95% CI) AAUPR
Fracture 274 0.86 (0.82-0.89) 0.03 0.93 (0.91-0.95) 0.00
L4A
Base 9% 0.74 (0.68-0.80) 0.12 0.52 (0.40-0.61)> 0.20
L4AT 93 0.75 (0.69-0.81) 0.14 0.57 (0.47-0.66)° 0.25
44ALT 5 0.63 (0.33-0.94) -0.07 0.04 (0.00-0.16) 0.02
IYANW; 28 0.78 (0.69-0.87) 0.15 0.26 (0.11-0.43) 0.14
4L4A1.3 60 0.68 (0.61-0.76) 0.08 0.30 (0.20-0.41)? 0.10
44B
Base 142 0.90 (0.87-0.93) 0.03 0.84 (0.78-0.89)° 0.03
44B1 116 0.84 (0.80-0.88) 0.03 0.68 (0.58-0.76) 0.07
44B1.1 87 0.80 (0.75-0.85) 0.05 0.47 (0.37-0.56)° 0.06
44B1.2 27 0.80 (0.72-0.88) 0.02 0.19 (0.11-0.31)z 0.03
44B1.3 2 0.60 (0.17-1.02) -0.30 0.01 (0.00-0.02) -0.01
2 21 0.85 (0.75-0.94) 0.10 0.32 (0.17-0.50) 0.19
44B2.1 18 0.85 (0.75-0.95) 0.12 0.33(0.12-0.55) 0.24
44B2.2 3 0.93 (0.88-0.99) 0.00 0.05 (0.00-0.17) -0.03
44B3 5 0.82 (0.61-1.04) -0.06 0.19 (0.01-0.58) 0.11
44B3.1 5 0.82(0.63-1.02) -0.05 0.12 (0.00-0.25) 0.07
44C
Base 38 0.89 (0.82-0.9¢) 0.04 0.63 (0.46-0.78)° -0.06
44C1 28 0.90 (0.84-0.96) 0.08 0.42 (0.26-0.65) 0.07
44C1.1 27 0.90 (0.84-0.97) 0.07 0.44 (0.25-0.62) 0.10
44C2 9 0.92 (0.82-1.01) -0.04 0.19 (0.05-0.36) -0.40
44C2.1 9 0.90 (0.79-1.02) -0.04 0.16 (0.05-0.31)> -0.38
Weighted mean AUC A Weighted mean AUPR A
0.83 +0.06 0.64 +0.07

Reported with the area under the receiver operating characteristic curve (AUC) and the area under the
precision-recall curve (AUPR). The outcome measures for the most important groups. 95% confidence
intervals (Cl) are computed using bootstrapping. The “base case” corresponds to the Danis-Weber
classes (AO/OTA 44A, 44B, and 44C). Outcomes with ¢ 1 instance are not reported. Radiographs at
400 400px resolution. AAUC and AAUPR was the difference in AUC and AUPR comparing the actively
trained network to the pre-active training network at 256 x 256px resolution. Increasing resolution prior
to active learning had no effect on performance

®Indicates that the AUPR with 95% Cl exceeds random AUPR
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Danderyd (IVD)
While the AUC was good for type A fractures in the IVD, AUPR was only better than chance
for three outcomes (base case/ type “A”, subgroup Al.1 and group A3).

Type B fractures were the most numerous in the 1VD. All had good to excellent AUC, and
all had AUPR better than random, even rare outcomes such as B1.3, B2.3, and B3.3.

The network had excellent AUC and AUPR for type C fractures. The model performed
better than random for the same type C outcomes in the Danderyd set (base, C1, C1.1, C2) as
it did for the Flinders set, except C2.1.

The wAUC increased by 0.04 (from 0.89 to 0.93), and the wAUPR increased from 0.57 to
0.65 for the IVD. A random classifier would give a wAUPR of 0.23. See Table 2.

The model was less accurate for malleolar fracture detection (“base” AO/OTA 44) on the
EVD than the IVD. The EVD dataset is less diverse, with fewer outcomes (23 vs. 36 AO/OTA
outcomes). Notable was that fracture detection (fracture “yes"/"no") had AUC 0.86 (0.82-0.89)
for the EVD vs. AUC 0.95 (0.94-0.97) for the IVD.

Flinders (EVD)

Type A fractures were the second most numerous in the EVD, as was in group Al. Type
A fractures had the lowest AUC, but only Al1.1 performed worse than a random classifier
measured in AUPR. However, there were few outcomes against which to measure performance.
Figure 2 shows type A fractures and how the network classified them incorrectly.

For type B fractures, the base case performed well. While AUC was decent for all type B
outcomes, four out of ten cases did not reach better AUPR than a random classifier (i.e., B1.3,
B2.2, B3, and B3.1).

Type C fractures performed well, as did all four subclasses of type C outcomes. See
Table 3.

Figure 3 shows an example of a type A1.3 fracture in the EVD, incorrectly classified as a
type B fracture. Figure 4 shows examples of type B1.2 fracture incorrectly classified as type C.

Table 3 displays the change in performance for every class from active learning for the
EVD. Most notable is a drop in performance for group C2 fractures, where group C2 and
subgroup C2.1 decreased considerably in AUPR (-0.40 and -0.38, respectively). The wAUC
increased by 0.06 (0.77 to 0.83), and the wAUPR increased from 0.57 to 0.63 for the EVD. A
random classifier would give a wAUPR of 0.32.

88



Fig. 2 Incorrectly classified cases where the network failed to detect Type A, sorted from lowest
probability to highest
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Fig. 3 Activation heatmap where a type 44A1.3 fracture is incorrectly classified as a type B fracture. The
activations show what the model reacts to classify fractures. Study from the external validation data.
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EXTERNAL VALIDATION OF AN ARTIFICIAL INTELLIGENCE MULTILABEL DEEP LEARNING MODEL
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Fig. 4 Activation heatmap of a type 44B1.2 fracture, incorrectly classified as a type C fracture. The
activations show what the model reacts to classify fractures. Study from the external validation data.
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Secondary outcomes: Intra-observer measurements (ICC and Cohen’s Kappa)
Intra-observer measurements for malleolar fracture have ICC 0.86 and kappa 0.85, and for
the type of fracture, 44A-C, ICC 0.76-0.84 and kappa 0.85-0.78. Less severe fractures, i.e.,
A1, B1, and C1, had higher kappa values than more severe cases, perhaps because they are
more prevalent. ICC and kappa are poor for most other outcomes, and we consider the task
challenging for humans. Several classes had no interobserver agreement (kappa 0), mainly
because they were not represented in the EVD or were so few that any disagreement or
agreement had a disproportionate influence. See Supplement 1, Table S2 (available online).

We report performance for secondary outcomes, like non-malleolar fractures, along with
more in-depth data and complete experiment readouts in Supplement 3 (400 x 400 pixels,
available online) and Supplement 4 (256 x 256 pixels, available online). Supplement 4 (available
online) reports the initial EVD performance before retraining and active learning.

DISCUSSION

This study aimed to externally validate a complex multi-label AO/OTA 2018 ankle fracture
detection model. Few models are externally validated, and we found none as multifaceted
as the AO/OTA in our study. In this study, we wanted to establish a baseline against which to
compare future models. We found a gap in our model performance under external validation
and reported a way of actively improving performance. We found that the model performed
very well on an external validation set. Our model classified fractures much better than chance
for all outcomes and indicates authentic learning utility for classifying ankle fractures in an
external setting.

This study used the AO/OTA 2018 ankle classification system. A widely used alternative,
alone or in conjunction, is the Lauge-Hansen (LH) system. The LH classification system aims to
predict fracture patterns and ligamentous injuries based on injury mechanisms. Many studies
have shown that LH is only partially valid or reproducible. Lindsjo, as far back as 1985, raised
the question of poor reproducibility of LH between different populations based on previous
studies.” Later studies repeated these findings of poor reproducibility.'”.'®1%20.21 An MRI study
by Gardner et al. 2006 found that LH had limitations in predicting ligamentous injuries and soft-
tissue damage.” These findings were replicated by Kwon et al. in 2010 and 2012 using actual
injury footage.?>2%24 Boszczyk et al. 2018, came to the same conclusion based on radiographs
and patient-reported injury mechanisms.?' Patton et al. 2022 came to similar conclusions based
on CT and complete patient workups.?® Both Michelson et al. and Haraguchi and Arminger
failed to reproduce Lauge-Hansens's results in physical experiments. They concluded that
the LH system could not be used to predict injury mechanisms or injury patterns.? 2’ The
AO/OTA standard launched the Danis-Weber system. Danis-Weber is based on the location of
the lateral malleolus fracture about the syndesmosis. AO/OTA then extends the Danis-Weber
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classification to consider the medial and posterior malleolus injuries and grades fractures
based on physical appearance.” 2 The main critique of the AO/OTA ankle system is that it is
complex and that isolated medial malleolus fractures are treated as distal tibial fractures.?>??

Our goal was to develop Al models for rapid, easy, and accurate fracture classification
and clinical decision-making. LH is not well suited to predicting injury mechanisms from
radiographs in its current form, whereas AO/OTA is imaging-based. In the clinical context,
AO/OTA (complete or simplified Danis-Weber) and LH are often used in conjunction to guide
treatment decisions. The classifications are similar, and conversions between the two systems
have been suggested, but no fully agreed-upon complete conversion exists.2430-34

Model training
The training of Al models often comes down to hidden factors and confounders that are only
sometimes related to actual pathology detection. For example, in a multicenter study, Badgeley
et al. found that logistic and healthcare system parameters were often responsible for
prediction. Without them, performance fell to that of a random classifier.*® Subjecting the
model to another dataset exposes it to a different data distribution-called a dataset shift**-and
is crucial for evaluating models. It should be integral to the model training and development
stage. If the model only performs well on the data it was trained on or from one hospital, we
can quantify this. It reduces the risk of presenting overfitted models as research progresses.
In this study, the Flinders data has a different distribution and priori probabilities than the
training data. For example, there were three times as many type A fractures. The Flinders data
(e.g., EVD) had three images per study compared to four or more for Danderyd. The presence
of follow-up images, e.g., weight-bearing one week after the trauma - was not a part of the
network training. A non-displaced “weight-bearing” exam would signal a less severe injury
to a human reviewer, whereas the network did not recognize this signal. We expected the
IVD performance to be somewhat better. For both datasets, AUC and AUPR are better than
random for all outcomes. Few Al models are validated, making it difficult to assess how general
and transferable these models are to other settings and what performance we can expect in
our study. For the three studies, Oliveira e Carmo et al. found performance was not affected
dramatically for the validation set?(see Supplement 1, Table S1a, available online). However,
those studies evaluated models with just two or three outcomes. The AO/OTA classification,
as used in our research, had 40 outcomes for ankle fractures - not all mutually exclusive.
As we were dissatisfied with the performance of the EVD, we tried multiple strategies to
improve performance. We increased image resolution, which did not affect EVD performance.
We tried to drop views to make the training data resemble the EVD data (three standard
views in EVD vs four or more in the training data). Neither had any performance effect, and
we speculated that type A fracture signs had a too-discrete training signal for the network.
Only after active training (i.e., additional training data focusing on the problematic type A
classes) could we improve performance by increasing resolution. Yet, we did not see any rise
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in performance past 400 x 400px. However, it can be desirable to reverse this generalization
process on the externally validated model in a clinical application, i.e., honing it in the local
setting. This would be done by actively retraining the externally valid model on data from the
clinic where it is being used.

To our knowledge, this is the first study that externally validates such a complex fracture
classification model and raises the question of what we can expect. Our model performed well
compared to other multinomial classifiers, even on EVD data' %% (Supplement 1, Table S1b,
available online). While we must take care when applying the algorithm to a new environment,
it appears to work satisfactorily. Lim et al. (2014) found that many of the most common
orthopedic procedures had poor evidence-based medicine support and were unnecessary.*
We believe that tools such as this algorithm and evolutions could be part of the solution
towards a more stringent and evidence-based treatment, for example, by reducing ambiguity
in treatment decisions, identifying failure patterns, or automating data reporting to registries.

Limitations and strengths

In alignment with our previous studies” ', we initially tested our trained model on 256 x 256
radiographs but had difficulties capturing type A fractures. We attributed this to them being
rarer in the training data. Type C injuries were also uncommon, but the network performed
better. Our experience was that the radiological footprint of type A fractures was less clear as
these injuries tended to be less severe. The model captured Type A fractures after increasing
the radiograph resolution and actively training for them. We found no benefit in going beyond
400400 radiographs for our data.

As not all outcomes were sufficiently prevalent in the test data, we could not quantify all
outcomes with reasonable confidence intervals. This was evident in cases where upper AUC
confidence interval bounds exceeded 1.00 (i.e., 100% accuracy). Similarly, outcomes with few
test cases (5 or less) AUPR could not be shown to outperform random guessing.

We did not have the population distribution for either dataset. The original training data
was anonymized upon collection and did not come with population parameters. It consisted
of all available trauma radiographs at Danderyd at that time. We have only excluded pediatric
ankles. This makes it representative of the area from where it was collected. The Flinders
data concentrated on lateral malleolus injuries and excluded casts and displaced fractures
but included weight-bearing images and exams that were not concurrent with the injury.
Therefore, it was impossible to determine how representative the EVD was of training data
regarding population.

CT and MRI scans and operative findings are essential to the AO/OTA classification. CT
scans are considered the gold standard in visualization. Neither dataset had access to CT
scans, MRI scans, or patient journals. The lack of additional modalities or patient records made
ligamentous injuries more challenging to classify and can affect the ground truth. However,
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this accurately simulated the daily clinical practice in many clinical situations where the initial
assessment is performed on a radiograph.

The validation sets were limited in size for a model with so many possible outcomes.
Several outcomes were scarce in the EVD and IVD, making the variability extremely large. We
have only validated our model on this site. If we were to look at a different hospital, we would
get different results. Of course, this is true with all external validation.

The software used in our previous study was unsuitable for this study’s experiments.
Due to the random nature of model training, the exact performance for the IVD and EVD will
vary slightly. However, comparing the previous model with the updated software where active
learning was performed would be erroneous. Instead, we replicate the initial experiment.

Conclusions, interpretation & generalizability

To our knowledge, this is the first paper that externally validates a multi-label radiographic
ankle fracture classifier of this complexity. Despite considerable differences in the data
makeup, we illustrate active learning strategies to improve external validity. Our model could
successfully be used for complex ankle fracture classification at a different hospital, which
is not to say that it will work equally well at all hospitals. We concur with the literature that
the clinical relevance of published Al models must be proved through external validation.
As clinical Al goes beyond simply stating the obvious “fracture or no fracture,” this becomes
even more true.
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ARTIFICIAL INTELLIGENCE IN ORTHOPAEDIC TRAUMA

Hype or Disruptive Innovation?

On August 3, 2023, the authors of this chapter entered the following prompt into the Chat
Generative Pretrained Transformer (ChatGPT; OpenAl, San Francisco, CA): “Please write a
scientific introduction for Rockwood and Green; covering artificial intelligence (Al) and its
basics, the applications in orthopaedic trauma, and future perspective.”

ChatGPT# returned the following:

“In the rapidly evolving landscape of orthopaedic trauma management, the integration
of Artificial Intelligence (Al) has emerged as a transformative paradigm, promising to
revolutionize traditional approaches and enhance clinical outcomes.

Al, a multidisciplinary field at the intersection of computer science and healthcare,
encompasses the creation of intelligent systems capable of mimicking human cognitive
functions such as learning, reasoning, and problem-solving. Its fundamental principles,
rooted in machine learning and data analysis, empower Al systems to extract meaningful
insights from vast and complex datasets, thereby augmenting diagnostic accuracy,
treatment planning, and prognostic capabilities. Within the purview of orthopaedic
trauma, Al's prowess has found a compelling canvas for applications ranging from
automated fracture detection and classification to personalized surgical navigation and
predictive modeling. As we stand on the precipice of a new era in medical practice, this
chapter endeavors to elucidate the fundamental underpinnings of Al, elucidate its current
applications in orthopaedic trauma, and extrapolate the tantalizing future prospects that
hold the promise of reshaping the landscape of fracture care.”

Al—the science and engineering of intelligent machines, especially computer programs—
now permeates health care. The application of Al in the field of orthopaedics is a new and
transformative frontier of data science, bearing the hope and promise of revolutionizing ways
to promote health and deliver health care across specialties, including orthopaedic trauma.?*
63,86,87,93

After promising studies’ %8219 many reasoned that “with Watson's help” Al would change
our medical world. In contrast, critics argued hope and hype would crash in the trough of
disillusionment, also coined the “valley of death” for many Al-driven applications, following
Gartner’s hype cycle® (Fig. 9-1). Indeed, until 2022°*'%", there had not been a single Al-driven
clinical application in orthopaedic trauma that changed our day-to-day practice.'” % ¢ For
example, machine learning did not outperform traditional logistic regression algorithms for
predictive modeling of clinical outcomes in trauma data sets.% Nevertheless, many continued
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to believe—and write—that Al had the potential to greatly impact our field of orthopaedics.!®2%5%
63.67.86-88.93 Moreover, the rapid expansion of interest in this technology has gained an additional
boost since the development of generative Al—a class of machine learning trained using large
volumes of text, image, and audio data to generate new, natural human-like content.

Peak of

Inflated
Expectations
Machine
Learning

Natural
Language
Processing

Plateau of
Productivity

Expectations

Computer
Vision

Slope of
Enlightenment

Innovation Trough of
Trigger Disillusionment
Time

Figure 9-1. Gartner hype cycle, or Scott parabola, moving from innovation trigger, to peak of inflated
expectations, via the trough of disillusionment (also referred to as “the valley of death” for many Al-
driven applications), to ultimately reach a plateau of productivity. (Reproduced from Qosterhoff JHF, et al.
Artificial intelligence in orthopaedics: false hope or not? A narrative review along the line of Gartner’s hype
cycle. EFORT Open Rev. 2020;5(10):593-603. Adapted from Gartner Hype Cycle for Artificial Intelligence.
2019. gartner.com/smarterwithgartner.)

Large language models (LLMs) or chatbots, such as ChatGPT, are a form of generative Al,
trained using high volumes of text data, to perform a range of language-specific tasks. True
disruption came early 2023, when ChatGPT became mainstream. To illustrate the level
of disruption, the authors of this chapter prompted ChatGPT to write several paragraphs
throughout this chapter, making it a virtual coauthor. Chatbot writing is a hot topic at schools
and universities and among editors of scientific literature.® ¢

Generative Al, LLM in particular, convinced the public of Al's unparalleled potential, its
undisputable strengths, and its inherent flaws, dangers even [100]. While current versions
of these chatbots generate content with a remarkable level of sophistication, there will
undoubtedly be barriers to overcome and continual improvement to be made to enable real
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world impact (Fig. 9-2). The authors argue that 2024 may be the year to leave the trough
of disillusionment, ascend the slope of enlightenment, and finally discover the first useful
applications of Al in orthopaedic trauma in day-to-day clinical practice.?® 5% 55.60.62.85-88,91,92 \\Jg
are ever curious what the plateau of productivity will bring to our patients’ care.®®
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Figure 9-2. Al development: algorithm to patient. Barriers to overcome and continual improvement to
enable real-world impact pathway from a clinically relevant question through all the required steps to
reach models ready for clinical application.

A Brief History of Al

Al dates back to the mid-20th century. In 1943, Warren McCulloch and Walter Pitts proposed
the first theoretical computational model, which served as a foundation for the development of
machine learning (a branch of Al focused on the use of data, algorithms, and statistical models
to imitate human learning with increasing accuracy). Machine intelligence was also integral to
cracking Germany'’s enigma coding encryption during the Second World War by a team led by
British mathematician and cryptoanalyst Alan Turing at Bletchley.”® In 1950, Turing coined the
imitation game (or Turing test) as the test of a machine’s ability to express intelligent behavior
equivalent to or indistinguishable from that of a human.

In 1956, John McCarthy, a computer and cognitive scientist, coined the term artificial
intelligence and, with a group of researchers including Marvin Minsky and Claude Shannon,
organized the Dartmouth Conference, widely considered the birthplace of AL8 The 1950s
also saw Frank Rosenblatt’s design of the first neural network for computers, a method in
Al and type of machine learning process called deep learning, in which computers process
data via a series of interconnected nodes or neurons in a layered structure akin to the human
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brain. Arthur Samuel developed the first self-learning computer and coined the term machine
learning during this period.

The 1960s and 1970s saw substantial progress in the field of Al, with researchers
developing symbolic reasoning systems, natural language processing algorithms, realistic
pattern matching and substitution, and early versions of Al robots and chatbots. However,
progress slowed in the mid-1970s onward as processing power struggled to keep up with the
strong theoretical basis of the technology developed by scientists. Researchers and computer
engineers failed to develop algorithms capable of handling the complexity and nuance of
real-world problems. The development of expert systems—programs able to learn by asking
experts in a given field how to respond in specific situations—in the 1980s and increasing
expenditure on more sophisticated computing systems for machine learning and deep learning
during the 1990s reignited the interest in Al.

With advancements in computing power and the access and availability of “big data”,
machine learning algorithms became increasingly effective (moving from knowledge-
driven approaches to data-driven approaches) at handling complex tasks, such as image
and speech recognition. Defeat of world chess champion Garry Kasparov by IBM’s Deep
Blue supercomputer in 1997 ushered in a new era of Al and a transition toward widespread,
practical applications within software services and mobile devices, including the da Vinci
robotics-assisted surgical system (Intuitive Surgical)—the first device to gain U.S. Food and
Drug Administration approval for general laparoscopic surgery.

In 2006, Geoffrey Hinton coined the term deep learning to describe algorithms that could be
trained to recognize objects and text in images and videos. The 21st century has also observed
the development of Al-enabled autonomous vehicles, voice-activated virtual assistants, human
gesture recognition solutions, increasingly humanoid robots, programs to detect previously
undetected particles, computers that can teach themselves to walk, biometric recognition, and,
in health care, increasingly effective detection and diagnosis of conditions such as cancer.

While the expectations for powerful Al solutions remain high, critics have also argued that
many of these technologies have and will continue to plunge into the trough of disillusionment
following Gartner's hype cycle® (see Fig. 9-1). Despite the array of powerful functions provided
by Watson—IBM's Al and Internet of Things (IoT) platform—announcement of its full withdrawal
on December 1, 2023, provided a stark awareness of the potential lifespan of such technology
and important considerations around integration into real-world contexts, including the range
of settings in health care.

Overall, the authors of this chapter consider Al as a technology capable of driving all forms
of innovation in orthopaedic trauma. We believe Al will help sustain an existing position in
the market (sustaining innovation, such as current Al/computer vision solutions for detecting
fractures); will provide gradual, continuous improvement of existing services (incremental
innovation, such as improvements in interpretation of text and audio for automating coding);
will form technologies that disrupt the entire market (disruptive innovation, such as Al- and
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augmented reality-enabled surgery; and will spark breakthrough technology that transforms
the industry by creating new markets (radical innovation, such as providing patients
unparalleled access to medical information and engagement in health systems).?3 54 5. ¢0. 62

85-88, 91, 92

WHY?

To Alleviate the Healthcare Burden to Society: Current Healthcare Systems Are
Not Sustainable

“If the computer does the simple stuff, we have more time for our patients”.’> Al has
demonstrated the ability to liberate surgeons from repetitive operational tasks, enabling them
to spend more time on rewarding engagement with their patients, fellow clinicians at work,
and family and friends outside work.

Common frustrations during an orthopaedic surgeon’s daily work often arise from
mundane tasks, navigating multiple platforms that lack interoperability, to achieve results that
should be be simple but instead demand multiple steps, such as ordering radiographs in the
emergency department (ED), generating clinical documentation of an outpatient visit, triggering
transitions of care and appointment scheduling, and operation notes and postoperative orders.
Substantial cost savings may be achieved by automation of relatively basic, low-risk, routine
processes and procedures.?

Al can substantially augment a clinician’s activities through pattern recognition at a pace
and scale to improve diagnostic precision and efficiency. For more complex tasks, Al is more
likely to complement physicians than to replace them. Speeding up diagnostics in simple cases
creates more autonomy for junior doctors by supplying Al-driven expert advice in an instant,
thereby closing the so-called expert gap.“® % Al models could make the ED more productive
and safer with automated triage based on plain text or with early warning systems for adverse
events.? 342 |t js estimated that Al could reduce annual health care costs in the US, where
expenditure is at an all-time high, by $150 billion by 2026.4

Overcome Human Biases: Decrease Undesired Practice Variation, Improve
Pattern Recognition, and Reduce Biased Decision Making

Al could be an aid to critical thinking. For a patient with an ankle or distal radius fracture, the
adage “What you get depends on where you live and who you see” is true.?s' One could argue
that such practice variation is undesired. Medicine in general, and our field of orthopaedic
trauma in particular, is rife with unsatisfactory levels of agreement between doctors and
surgeons. One good example is the variability in fracture recognition and fracture classification,
alongside relatively high variations in surgical decision making.'s 7. 18.25-27.36. 75,76, 103, 106 |y thjg
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clinical scenario, Al algorithms should not just replicate human thinking processes but should
aim to exceed them." 2

Al is all about pattern recognition, at pace and at scale to improve diagnostic precision
and efficiency. This capability is especially relevant to care of the orthopaedic trauma patient,
which is often dependent on a surgeon’s ability to recognize patterns such as (1) fracture
patterns on radiographs (Al domain: computer vision)? 5462891 (2] 3 combination of specific
patient characteristics that could predict arthrosis, infection, or trigger adverse events and
other clinically relevant outcomes (Al domain: machine learning prediction tools)®; (3) an
arrangement of words predictive of underlying anxiety or depression (Al domain: natural or
LLM [3]; and (4) patient’s facial expression'® in order to integrate mental and social health in
orthopaedic practice.*®

However, human behavior and performance, especially with regard to pattern recognition,
has its limitations and is prone to several biases.“® For instance, the recognition of fracture
patterns is shown to differ greatly between surgeons such that different surgeons see different
things. Moreover, humans are unaware of their blind spots (unknown unknowns), which has been
coined WYSIATI, for “what you see is all there is”, by Daniel Kahneman.“® Biases and blind spots
may systematically affect trauma patients by overlooking specific fracture patterns, by making
treatment decisions based on familiarity and personal preference rather than evidence, and, more
importantly, by failing to recognize aspects of individual mindset or circumstances (the “whole
person lens") and focusing instead on pathophysiology and the familiar biomedical paradigm.

It is important to note that the complete elimination of human biases is not possible and
the introduction of and perpetuation of biases within training algorithms remain a risk that
should be controlled. For instance, the potential amplification of bias should be addressed
when using clinical datasets from one population for predicting clinical outcomes in another.
The importance of ensuring bias-mitigation strategies when building Al models is paramount.8
Therefore, we should be mindful of the ground truth, not mistaking our biased opinions for a
gold standard in supervised training of algorithms.'

HOW?

Guiding Principles for Al Model Development in Orthopaedic Trauma
ChatGPT?® output:

“Basics of Artificial Intelligence
Artificial Intelligence encompasses a diverse range of techniques and methodologies that
enable computers to simulate human-like intelligence. At its core, Al relies on machine

learning algorithms that learn from data patterns and iteratively improve their performance
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over time. These algorithms include supervised learning, where models are trained on
labeled datasets, and unsupervised learning, which involves extracting insights from
unlabeled data. Supervised learning can generally achieve good to excellent performance
with limited data, but providing detailed information about the data is a costly effort,
especially when these need to be provided by experts that have limited time—such as
surgeons. This is one of the most challenging obstacles in creating accurate models in our
field. Reinforcement learning further enables Al systems to make decisions by interacting
with an environment and receiving feedback. Deep learning, a subset of machine learning
and the most recent leap forward in the Al field, involves artificial neural networks inspired
by the human brain’s structure and function. These networks, often referred to as deep
neural networks, are particularly adept at handling complex and unstructured data, such
as images and text, making them invaluable tools in medical imaging analysis and natural
language processing.”

Expanding Education: Training our Peers
Orthopaedic trauma surgeons should become familiar with the basic concepts, technical
aspects, and implementation of Al technologies in orthopaedic trauma to better understand
and critically appraise the validity of Al algorithms.“¢ Avoidance will hinder the opportunities
to optimize the use of these technologies as they become introduced in our daily practice and
will magnify the risk of dependence as Al becomes part of the data infrastructure in health
care, including electronic medical records (EMRs). Several educational initiatives specifically
combining Al and health care exist, such as the European Union-funded AIPROHEALTH?, which
offers a free online course as well as certificate programs in Al for health care providers.
There is also a movement toward introducing education regarding Al in a more structured
manner. The basics of Al should be included when training medical students, residents, and
practice peers to understand the language of specialists in this field—our collaborating
computer scientists.

Interdisciplinary Engagement: Bringing Computer Scientists and Engineers into
Orthopaedic Trauma Care

Orthopaedic trauma teams should engage with computer scientists and engineers to help
develop effective use cases and models designed to fit these functions in the real world.
While computer scientists and engineering resources are often limited within health care,
especially considering the pull of such talent into the medical technology and digital health
industry, orthopaedic trauma offers several clinically meaningful (and commercially viable)
opportunities for interdisciplinary engagement. A new generation of clinicians with a specialist
interest in Al are emerging that understand the importance of bringing together good data
infrastructures with appropriate Al techniques to match the specific clinical use case.
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Data Integrity

Use of Unbiased Prospective Data in Orthopaedic Trauma

A model can perform only as well as the data used to train it. Collaboration between different
institutions and surgeons is essential in generating sufficient quantities of high-quality data to
train models. While recent endeavors using “big data” in orthopaedics are encouraging® %, the
availability of data of high volume (e.g., cohorts from large health systems, clinical registries,
biobanks) and high quality is limited, especially in orthopaedic trauma. These data limitations,
particularly in terms of retrospective data, may be due to the acute nature of trauma, scattered
datasets of variable quality that are not networked between hospitals, and restrictions around
the availability of data and experts to label the data itself. The ability to utilize prospective
data in Al models is further challenged by the requirement of greater financial resources, often
a lengthy inclusion period, and high variations in treatment standards, potentially leading to
underpowered analyses due to insufficient numbers of a patients for a given injury type.

Overfitting and Ground Truth

Challenges of Al model development across these functions are multifold. Overfitting is a
phenomenon that occurs when a model becomes exceedingly well adapted to the training
data set and captures not just the main underlying patterns but also the noise and outliers
specific to that data. Model overfit can occur when training deep learning models and as a
result compromise its external validity and generalizability when applied to new data sets.
This limitation renders the model less effective, as it tends to make predictions based on the
noise it has learned rather than being anchored around the true and genuine patterns.

In a famous example, a model was trained to detect traumatic pneumothorax on chest
radiographs. The data set used for training contained a relatively large number of radiographs
with a chest drain inserted within the pleural cavity. Even though the model output was
frequently correct, its prediction was based on the presence of a chest drain (noise) and
not the pneumothorax itself (Fig. 9-3). Overfitting can have severe implications in relation
to orthopaedic trauma imaging, leading to incorrect diagnoses or misguided treatment
recommendations. Therefore, ensuring a model is robust and not overfit is paramount for
maintaining accuracy and reliability in clinical applications. Regularization techniques, cross-
validation, data augmentation, and increasing the diversity of training data are common
methods employed to mitigate overfitting.
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Figure 9-3. CNN was trained to detect traumatic pneumothorax on chest radiographs. The data set used
for training contained a relatively large number of radiographs with a chest drain inserted within the
pleural cavity. Even though the model output was frequently correct, its prediction was based on the
presence of a chest drain (noise) and not the pneumothorax itself, shown in red.

In addition to variations in data, differences in labeling can also exert a notable impact on model
performance. Label noise can significantly disrupt a convolutional neural network’s (CNN's)
effectiveness, and radiology reports, which often rely on a single observer, can vary in terms of
expertise and accuracy. Relying solely on a single expert for data labeling carries the inherent
risk of biasing the CNN toward that specific observer. Another method is to classify each
fracture by multiple clinicians—to create the so-called ground truth by majority voted decision.
However, requiring experts to label and annotate each individual case is extremely labor-
intensive and repetitive. In addition, human bias is reduced but not eliminated when a majority
voted decision is used. These limitations should all be considered when critically appraising
deep learning algorithms. An example in fracture classification: What was considered the
ground truth? Which imaging modality was used to determine this reference standard? Were
there one or more observers classifying to determine “the truth”?

Moreover, it is challenging to find a sufficient number of qualified experts to provide
accurate image labels when developing CNNs. Using reference standards such as CT scans as
the ground truth is considered the best approach for training CNNs. However, these standards
may not always be readily available, especially in cases involving “simple” fractures.
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Appropriate Regulation: Enabling Responsible Al Through Robust Governance,
Data Sharing, and Federated Learning

Appropriate levels of Al regulation are required globally, and effective regulatory standards
by organizations within a region should be emulated and mirrored by others. For instance,
the EU has developed strong general data protection and regulation guidelines that other
countries should consider adopting to ensure adequate levels of data privacy, transparency,
accountability, accreditation, and security. Specific safeguarding strategies should include
careful documentation of data parameters, disclosure of methods for model development,
data sources, and open acknowledgment of potential biases, risks, and limitations of models.
Patients place substantial trust in health systems that use their personal health information,
and these safeguards and protections should be adhered to. This aspect is especially important
in regard to the trauma team, which is focused primarily on the acute management of patients
and less concerned about data per se during emergent care. Leadership from professional
societies and organizations (e.g., OTA, AO, national orthopaedic associations), patient advocacy
groups, and academic experts within and outside orthopaedics should be convened for human
oversight over development (reinforcement learning through human feedback) of Al models
to ensure trust among all stakeholders in this arena.

Federated learning—a decentralized approach to Al and machine learning models in
which raw data from edge devices are used to train models locally, thereby increasing data
privacy, before being shared with global servers as needed—offers an enhanced approach
that optimizes privacy while ensuring more streamlined flow of data between systems.
This approach may allow safe and efficient model training across hospital networks and
therefore more accurate development of Al solutions tailored to different patient populations
experiencing orthopaedic trauma.

Open access to algorithms allows for independent validation and adherence to FAIR—
findable, accessible, interoperable, and reusable—principles. Further, ethical and legal
guardrails should be developed that are aligned with values of diversity, equity, and inclusion.
Regulatory agencies should also be empowered with the authority to both enforce compliance
and grant accreditations for the development and utilization of safe, accurate, and equitable
Al models. Clinicians are ultimately responsible and liable for the outcomes of care delivered
using Al and therefore should understand the basis of this tool like any other in their toolkit.

In the research domain, advances have been made around standards of reporting Al
research, including CONSORT-AI®, CAIR®, and TRIPOD-AI?.
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WHAT?

This section will offer guidance for critical appraisal of Al tools in the upcoming era and will
discuss examples of potential applications.
ChatGPT® output:

“Applications in Orthopaedic Trauma

In the realm of orthopaedic trauma, Al exhibits transformative potential across diverse
domains. 1) Al-driven image analysis facilitates the rapid and accurate detection,
classification, and segmentation of fractures from radiological images, expediting diagnosis
and treatment planning. 2) Surgical interventions are bolstered by Al-powered preoperative
simulations and intraoperative guidance, enhancing precision, and minimizing risks.
Additionally, 3) Al-powered predictive models utilize patient data to forecast postoperative
outcomes, aiding in shared decision-making and optimizing treatment strategies.
Furthermore, Al-driven data mining and knowledge extraction from electronic health
records contribute to evidence-based clinical guidelines and facilitate research endeavors.

There is a range of computer vision modalities, encompassing image classification, object
detection and semantic segmentation. As we delve into each facet, we uncover their respective
contributions to fracture assessment and therapeutic interventions, underscoring the
transformative potential computer vision holds in orthopaedic trauma care.”

Al-Driven Image Analysis: Computer Vision

Fracture Detection

Image recognition and classification models using Al (also termed computer vision) are
increasingly being developed for automated fracture detection® ¢2 ¢7.84.86.91 "including some
solutions that are commercially available®. Most models provide classification based on the
entire image and produce heatmaps for approximate fracture localization (Fig. 9-4). New types
of models developed by computer scientists allow for more advanced possibilities, such as
accurate segmentation of bones and fractures. For example, the development of the Mask
R-CNN makes it possible to combine conventional object detection with segmentation, an exact
outline of the area of interest [91].

This neural network was used to train a model to detect, locate, and segment distal radius
fractures (Fig. 9-5). The benefit of these models compared to conventional object detection
lies in the user interface; that is, clinicians can more readily visualize and confirm whether the
conclusion drawn by the computer is correct. This type of solution is an example of “explainable
AL" in which the observer is able to understand what it is that the computer “sees”.”
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Figure 9-4. CNN for scaphoid fracture detection. Most models provide classification based on the entire
image and produce heatmaps for approximate fracture localization.

N

Figure 9-5. The development of the Mask R-CNN makes it possible to combine conventional object
detection with segmentation—an exact outline of the area of interest. This neural network was used to
train a model to detect, locate, and segment distal radius fractures.
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While earlier computer vision models were developed for fractures that are easily recognized
and classified clinically, growing experience with this technology is being used to solve
increasingly complex tasks. For instance, source data from advanced imaging such as
computed tomography (CT) and magnetic resonance imaging (MRI) are now being utilized as the
ground truth and the visual input for Al models to detect injuries such as scaphoid fractures,
which can be occult in 20% of patients, with increasing precision®:3% (see Fig. 9-4). Al models
may recognize patterns that are not apparent to the clinician or radiologist, especially if they
are challenging to diagnose on plain radiographs. The combination of improved reliability as
compared to humans and a visual output with this prediction, fractures may be picked up
on initial presentation and receive optimal treatment, such as, in our example of scaphoid
fractures, avoiding overtreatment by either unnecessary cast immobilization or redundant
advanced imaging with MRI or CT.”

Fracture Classification

Training algorithms to classify fractures is a more challenging task given the marked variation
in intra- and interobserver agreement on fracture classification, especially based on plain
radiographs alone.!s: 7. 18.21. 26,36, 75,76, 81,103,106 \Whjle CT scans are commonly used to improve
accuracy and definition of the fracture configuration, they are also subject to a level of inter-
surgeon disagreement. As expressed by Doornberg et al., “Surgeons agree mostly with
themselves, and not so much with each other”.?’” However, classification of each fracture by
multiple clinicians to create the so-called ground truth by majority voted decision is the best
we have.

Studies generally report results similar to human performance; this extends to the fact that
more complicated classification systems suffer from lower reliability and accuracy, mirroring
clinical practice. Al does not exceed surgeon performance for fracture classification.®”#* These
classification tasks, like detection tasks, are ubiguitous among early studies using Al models.*”
84,85

These are examples of supervised learning: images are labeled by humans and a CNN
is trained based on these truths. In contrast, unsupervised learning strategies can also be
applied: the computer finds patterns in pathoanatomy on images, while outcome variables
are given for automated cluster analyses. These Al algorithms do not just replicate human
thinking processes—classification of fractures—but should aim to exceed them by offering
new classifications."??

Prediction of Clinical Outcomes Based on Images: Multimodal Approach

Beyond automated fracture detection, a step change in Al applications includes the prognostic
and diagnostic utility of these models to advance clinical outcomes. The prediction of clinical
outcomes, based on trauma radiographs potentially augmented with a patient’s personal
characteristics, provides a multimodal inputs and outputs that may influence decision support.
For instance, for patients with distal radius fractures, we can not only detect, segment, and
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classify the fractures (see Fig. 9-5), but also gauge the likelihood of loss of threshold stability
[4] (Fig. 9-6). This may guide ongoing treatment with a cast or conversion to offer fracture
fixation to our patients in a shared decision-making process.

This type of data-driven approach to decision making is otherwise challenging, if not
impossible, where surgeon-based estimations of fracture instability carry a 54% accuracy
based on trauma and reduction radiographs, improving to 70% with advanced imaging based
on CT interpretations as discovered in online experiments.*’ In contrast, a CNN can be trained
with an area under the curve of 0.83 and 76% accuracy to predict fracture instability based

on radiographs alone.*’

RAldius Instability Calculator

% Chance
of Loss of Alignment

TomSe%

Figure 9-6. Prediction of distal radius fracture instability. For patients with distal radius fractures, we
can not only detect, segment, and classify the fractures (see Fig. 9-5), but also gauge the likelihood of
loss of threshold stability.

This line of inquiry is more challenging; for example, identifying patients at risk for failure of
their hip fracture fixation based on FAITH data®® applying machine learning techniques without
imaging data failed'®2. However, we are confident that advancements will be made when trauma

data sets become richer and Al methodology more sophisticated.
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Figure 9-7. A: Using holograms in surgical preparation enhances the understanding of anatomy and

pathology, facilitating spatial tasks like patient positioning and surgical trajectory planning. B: An example
in orthopaedic trauma is augmented reality-guided sacroiliac screw placement. (Courtesy of Michiel
Herteleer and Kobe Bamps, Leuven University, Belgium.)

Surgical Interventions: Augmented Reality

Accurate visualization of anatomic structures and fractures is pivotal for both diagnostic and
therapeutic procedures. Deep learning-based Al models can process CT scans by segmenting
anatomic structures and associated fractures with high precision.? % Once segmented, these
Al models can subsequently reconstruct a detailed 3D model of the fracture site. Such Al
model outputs serve dual purposes: offering comprehensive anatomical insights and enabling
individualized treatment planning.

Augmented reality technology further augments the utility of these Al model outputs
by rendering them in the surgeon'’s field of view in real-time. This integration allows medical
personnel, especially those in training, to interact with these 3D reconstructions in a more
intuitive and immersive manner.’’” As a result, augmented reality could bridge the gap
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between theoretical knowledge and practical application. For surgeons, the 3D models
can be superimposed over the actual surgical site during both preoperative planning and
the intraoperative procedure. This provides both the experienced surgeon and the trainee
increased fidelity and information, including and improved understanding of the spatial
relationship of the fracture fragments and the surrounding anatomy.

Such technology enables the integration and visualization of 3D models into clinical
workflows, allowing surgeons to efficiently convert scans into 3D holograms in real life
projection over the patient’s affected anatomic site. In a cloud-based environment, medical
scans can be automatically converted into 3D holograms, which can be experienced and
manipulated in augmented reality by multiple users. Using holograms in surgical preparation
enhances the understanding of anatomy and pathology, facilitating spatial tasks like patient
positioning and surgical trajectory planning.’? % An example in orthopaedic trauma is
augmented reality-guided sacroiliac (SI) screw placement (Fig. 9-7). However, clinical efficacy
and accuracy have yet to be determined as compared to conventional methods.?
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Figure 9-8. Example of a machine learning-driven probability calculator in electronic medical records,
also known as predictive models, which use abstract data such as patient characteristics and lab values—
in this clinical scenario, to predict mortality in trauma patients.

Steps Toward Clinical Practice (see Fig. 9-2)

Model Development

Model development consists of two phases: training and testing. The process of training an Al
model involves a continuous and iterative approach. For computer vision, the model learns
from a data set that contain annotated (highlighted region of interest) and/or labeled (image-
level classification) cases. Predictive models use abstract data such as patient characteristics
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and laboratory values (Fig. 9-8). Each complete cycle through the entire training data set is
termed an epoch. Striking the right balance of epochs is crucial. Too few leads to suboptimal
performance, and too many results in overfitting, where the model becomes exceptionally
accurate on the training data but fails on new data.

The duration of an epoch can vary, spanning from hours to days, which is why computer
scientists often work with batches (essentially small parts of the data set, consecutively) to
monitor the learning rate of a model and to identify a plateau. This plateau represents a point
at which there is a substantial diminishing return in the model’s improvement with each pass of
a batch during training. Throughout this training phase, the model tries to discern the essential
data characteristics that align with the ground truth.

Subsequently, in the testing phase, the model evaluates instances it has not encountered
previously and generates predictions based on its learned patterns. This is referred to
as internal validation. Performance assessment is conducted by comparing these model
predictions with the ground truth. It is crucial to acknowledge that during testing, the model's
performance may not consistently mirror its real-world effectiveness, particularly when
handling infrequent cases that are underrepresented in the data set. These rare instances
often carry clinical significance, demanding a balance between effort invested and clinical
relevance.

To mitigate this challenge, a common approach in computer vision is to introduce
randomness into the data set, such as by applying image rotations, random cropping, stretching,
and horizontal or vertical mirroring. This forces the neural network to identify features that
remain unchanged despite manipulations and is commonly known as data augmentation.

External Validation

External validation is the next phase after internal validation (often referred to as the test
set) when assessing a model. In external validation, the focus shifts from reproducibility to
transportability. To ensure the adaptability of a model to various environments, several factors
must be considered. These factors include demographic disparities, operator-dependent
radiologic variables (e.g., angles, rotations, contrast enhancement, and radiation doses during
radiograph or CT procedures), as well as variations in the make and quality of radiography
equipment. It is imperative to thoroughly evaluate these factors before deploying a model to
a different institution or setting.

The significance of this evaluation becomes clear in instances where models exhibit
impressive performance on radiographs from a general population but struggle when
confronted with diagnostically challenging cases. Typically, the actual model performance,
assessed through external validation, tends to be lower compared to the performance
measured using the data set employed during the model's development phase. This
performance dip underscores the substantial differences in image characteristics between the
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internal validation and geographical external validation data sets, underscoring the importance
of geographical external validation.'

Prospective Validation and Clinical Efficacy

When a model has been through internal and external validation, confirming its predictive
accuracy and robustness, the next step is to prospectively validate it—in real-time—and evaluate
its performance with the struggles of daily practice. We often encounter radiographs shot from
suboptimal angles, over- or underexposed images, and a great variance in demographics
presenting to the emergency department, all of which the model needs to be able to handle.
One of the great challenges is having a model incorporated in the imaging software used by
the hospital. Ideally, the output of the model should be presented as an extra image or report
to the clinician. However, when validating a model, this will inherently introduce a bias. One
way to prevent a model from biasing clinicians in their decision making, before it is proven to
be accurate in a clinical setting, is to blind the results from the clinician. In other words, we
perform our assessment and treatments as we would normally do, and in the background the
model presents their prediction or treatment to a researcher, which can then over many cases
evaluate the real performance of the model in the hospital without compromising patient care.

Self-Learning

If the model has proved to be accurate and trustworthy in a clinical setting, it should be
employed in daily practice to further improve its accuracy and thus its efficacy. In a perfect
scenario, doctors would use the model’s predictions in their decision making, and the model
learns from the note if it was correct or not, so that it may learn from each encounter. Self-
learning could be considered an area of controversy because it can be seen as doctors
essentially training a model to replace their expertise. This poses another challenge: If models
replace our expertise in certain diagnoses or predictions, how will we train the new generation
of doctors to be able to correct or deviate from the model when they deem necessary, like the
guidelines we may deviate from daily?

FUTURE PERSPECTIVE

ChatGPT?® output:
“Future Perspectives
The burgeoning synergy between Al and orthopaedic trauma presents an exciting trajectory
of advancement. The evolution of Al algorithms holds promise for real-time intraoperative

decision support, where Al systems provide instantaneous insights to surgeons during
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procedures. Collaborative robotic systems, guided by Al, may redefine surgical workflows
and enable remote consultations, transcending geographical barriers. The harnessing of
multi-modal data, encompassing patient genetics, biomechanics, and lifestyle factors, could
pave the way for personalized treatment regimens tailored to individual needs. Moreover,
Al’s potential to decipher complex molecular interactions could engender breakthroughs
in regenerative therapies and fracture healing mechanisms.

In summation, the convergence of Al and orthopaedic trauma signifies a watershed moment
in modern medicine, heralding a future characterized by precision, efficiency, and patient-
centered care. This chapter embarks on a comprehensive exploration of this dynamic alliance,
delving into the foundational principles of Al, its current applications within the domain of
orthopaedic trauma, and the tantalizing vistas that lie ahead. As we traverse this uncharted
terrain, the symbiotic interplay between Al's computational prowess and the nuanced expertise
of orthopaedic practitioners promises to redefine the boundaries of possibility and reshape
the trajectory of fracture management.

Large Language Models

The explosion of interest in generative Al*“—a class of machine learning models that are trained
using large volumes of text, audio, image, or video data to generate new, natural, human-like
content—holds the promise of clinical applications of Al in orthopaedics beyond the examples
presented in this chapter.

The final Al example we will discuss involves the application of LLMs, also known as
chatbots, with ChatGPT's output included in this chapter. LLMs have potential high-value
applications in our outpatient clinics, including serving and acting as a virtual assistant, and
linking triage and health advice to automated appointment scheduling.

One of few potential threats, however, is the so-called Al hallucination, which can fuel
misinformation, such as the potential answers to a clinical question such as, “Is this distal radius
fracture stable or will it lose threshold alignment during follow-up and become unstable?”"—
leading to intensified distress and unhelpful thinking through medical misinformation.

Generative Al and LLMs are expanding the reach of Al technology within health care
and our daily lives. While such technology is poised to enable a variety of value-generating
opportunities, stakeholders should be aware of potential threats and supportive strategies for
data quality, model development and regulation, and legal and ethical guardrails.
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CONCLUSION

Al in orthopaedic trauma shows great promise. There are many barriers to its adoption:
overcoming bias in algorithms, incorporating new applications into clinical workflow, regulatory
approval, and billing.””

The ultimate goal is data-driven decision support to overcome human biases and to

support shared decision making that focuses on patients’ values and preferences.
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ABSTRACT

Aims

Triplane ankle fractures are complex injuries typically occurring in children aged between 12
and 15 years. Classic teaching that closure of the physis dictates the overall fracture pattern,
based on studies in the 1960s, has not been challenged. The aim of this paper is to analyze
whether these injuries correlate with the advancing closure of the physis with age.

Methods

A fracture mapping study was performed in 83 paediatric patients with a triplane ankle
fracture treated in three trauma centres between January 2010 and June 2020. Patients
aged younger than 18 years who had CT scans available were included. An independent
Paediatric Orthopaedic Trauma Surgeon assessed all CT scans and classified the injuries as
n-part triplane fractures. Qualitative analysis of the fracture pattern was performed using
the modified Cole fracture mapping technique. The maps were assessed for both patterns
and correlation with the closing of the physis until consensus was reached by a panel of six
surgeons.

Results

Fracture map grouped by age demonstrates that, regardless of age (even at the extremes of
the spectrum), the fracture lines consolidate in a characteristic Y-pattern, and no shift with
closure of the physis was observed. A second fracture map with two years added to female age
also did not show a shift. The fracture map, grouped by both age and sex, shows a Y-pattern
in all different groups. The fracture lines appear to occur between the anterior and posterior
inferior tibiofibular ligaments, and the medially fused physis or deltoid ligament.

Conclusion

This fracture mapping study reveals that triplane ankle fractures have a characteristic
Y-pattern, and acknowledges the weakness created by the physis, however it also challenges
classic teaching that the specific fracture pattern at the level of the joint of these injuries relies
on advancing closure of the physis with age. Instead, this study observes the importance of
ligament attachment in the fracture patterns of these injuries.



INTRODUCTION

Paediatric patients often present with unique ankle fracture patterns that are different from
the adults.! For example, transitional fractures of the distal tibia that occur in characteristic
patterns are believed to follow the typical progressive closure of the physis. Generally, the
distal tibial physis starts to close at the age of 12 years in females and 13 years in males,? and is
completed over 18 months.® The physis closes according to a characteristic pattern that starts
in the (centro-)medial part of the tibia, and consequently continues laterally along the posterior
tibia and finishes at the anterolateral tibia (Figure 1). The configuration of triplane fractures
has been thought to follow the characteristic closure pattern, based on the radiological study
by Kleiger and Mankin® in 1964. However, to the best of our knowledge, this idea has not been
challenged in the literature, and has become part of the established teaching.
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Figure 1. Fictive map presenting the expected fracture patterns by age, based on the characteristic
closure of the physis as presented in the paper by Kleiger and Mankin in 1964.

Triplane and Tillaux fractures are transitional fractures of the tibia. Triplane fractures extend
into three planes: coronal (metaphysis), sagittal (epiphysis), and axial (physis). Fracture pattern
recognition of these injuries is often challenging,* and unsatisfactory reduction can be the
result when fracture characteristics are not fully appreciated. Tillaux fractures are antero-
lateral avulsion fractures that are bordered proximally by, and extend into, the physis. These
are thought to occur at a later age, as they are believed to come about due to advanced closure
of the physis, where only the anterolateral part is still open.®

Fracture maps help to improve the understanding and recognition of fractures and
patterns,®'2 and are available to increase knowledge of triplane fractures in children. Based
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on axial CT scan images, maps of superimposed fracture lines can help to define fracture
patterns and location, especially in relation to physeal closure. Fracture maps have proved an
asset in elucidating complex fracture patterns of scaphoid, radial head, tibial plateau, proximal
humerus, and posterior malleolar fractures.”™ To date, only one study has used fracture maps
in triplane fractures,® focusing on preoperative strategies for screw placement, but the authors
did not explore the pathoanatomy of these injuries in any depth.

The purpose of this study is to explore the pathoanatomy of distal tibial triplane fractures,
to correlate the classic teaching of advancing physeal closure with overall fracture pattern
and answering the question: do triplane fracture patterns of the distal tibia correlate with the
hypothesized characteristic closing of the physis (Figure 1) with age, at the level of the joint?

METHODS

This study was approved by the Institutional Review Boards of the participating centres,
according to the Declaration of Helsinki.!

Patient selection.

For this mapping study, all consecutive ankle CTs from two level | trauma centres and one
specialized paediatric hospital from two different countries (the Netherlands and Australia)
between January 2010 and June 2020, in patients aged younger than 18 years, were
retrospectively reviewed by a fellowship-trained paediatric orthopaedic surgeon (JR).

The criteria used for inclusion were: age between 10 and 18 years; availability of a
preoperative CT scan with slices of 1 mm thickness or less; and presence of a transitional
distal tibial fracture. Exclusion criteria were: presence of an old or pathological fracture; CT
scan unavailable or only with slices thicker than 1 mm; and presence of associated conditions
such as, but not limited to, osteomyelitis, joint infections, or other fractures (excluding fibula
fractures).

Fracture classification.

Included CT scans were exported from various Picture Archiving and Communication Systems
as Digital Imaging and Communications in Medicine (DICOM) files. Patient characteristics such
as age at injury, sex, and side of injury were recorded. All CTs were assessed, and fractures
were classified, by a fellowship-trained paediatric orthopaedic surgeon (JR), by Salter-Harris
type'é, or as triplane (AO/ OTA 43t-E/6.1, defined as an epiphyseal fracture in the axial, coronal,
and sagittal plane, including a posterior metaphyseal component)'” or Tillaux (AO/OTA 43t-
E/5.1)”, using the axial, coronal, sagittal, and 3D CT reconstructions in Horos v. 3.3.6 (Nimble,
USA). When all included patients were assessed and classified according to their respective
fracture type, anything other than triplane fractures was excluded (Supplemental Figure 1).
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Fracture mapping.

Fractures were digitally recorded using standardized axial views, at 3 mm above the distal
tibial subchondral surface, a reliable method as defined by Cole et al’ in the articular mapping
of adult Pilon fractures. A healthy right paediatric ankle was chosen as the template. Recorded
CT slices were (if needed) mirrored, resized, rotated, and normalized to fit the dimensions
of the template tibia in Photoshop 2020 v. 21.1.0 (Adobe, USA), by aligning specific tibial
landmarks: with the intact posteromedial tibia as the starting point. Subsequently, fractures
with multiple displaced fragments were reduced digitally. Finally, for each recorded axial slice,
the fracture lines were tracked by hand using the built-in pencil brush with a size of 4 pixels
and superimposed on the template (Figure 2).

Figure 2. On the lefthand side an axial slice at 3mm above the plafond is fitted within the template and

then the fracture line is recorded by hand.
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Only fracture lines through cortical bone were considered major fracture lines, however minor
fracture lines, which do not exit cortical bone, were also recorded for analysis in a separate
fracture map. Physeal closure was recorded to create a fracture map for open physis versus
partially closed. Complete versus partial closure was determined on the preoperative CT scan
using the coronal, sagittal, and axial views by a fellowship-trained paediatric orthopaedic
surgeon (JR).

Patient characteristics.

A total of 182 patients were identified, of whom 99 with a Salter-Harris I, lll, and IV, Tillaux,
and extra-articular triplane fractures were excluded. A total of 83 patients had a triplane
fracture, and images of these patients were used for further fracture mapping analysis (Table
). Overall, 45 (54%) of these patients were male, and 38 (46%) were female. Mean ages were
14.4 years (11 to 18) for males and 12.5 years (11 to 15) for females (p < 0.001). In nine out of
83 patients (11%), the physis was completely open, in contrast to partial fusion detected in the
other patients (Table I).

Table 1. Baseline demographics and fracture characteristics

Characteristics Total
Male, n (%) 45 (54)
Female, n (%) 38 (46)
Mean age at trauma, yrs (range) 13.5(11 to 18)
Male 14.4 (11 to 18)
Female 12.5 (11 to 15)

Side of ankle fracture, n (%)

Left 28 (34)

Right 55 (66)
Fracture classification, n (%)

11-Part 55 (66)

1lI-Part 25 (30)

IV-Part 3(4)
Physis closure, n (%)

Open 9011

Partially Closed 74 (89)
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Statistical analysis.

Patient demographic details were reported as means and ranges, or percentages. Comparison
of means between two groups was by using the independent-samples t-test and, if non-normally
distributed, the Mann-Whitney U test was used. Fracture maps were visually assessed and
compared to the expected shift in fracture patterns based on physeal closure (Figure 1) by a
panel of six fellowship-trained surgeons (JR, KtD, FIJ, JD, BJ, RJ), and consensus was reached
for description of the fracture maps grouped per age, adjusted age (added two years to female
biological age), sex, age and sex together, and closure of the physis (open versus partially closed).

RESULTS

Fracture patterns: comparisons with the expected fracture lines.

A fracture map was created showing the expected transition of fracture lines following the
closure of the physis (Figure 1). The overview of all superimposed triplane fracture lines sorted
by sex presents a characteristic fairly standard Y-pattern for both sexes (Figure 3).

Fracture map grouped by age at time of injury (Figure 4) demonstrates that regardless of
age (even at the extremes of the spectrum), the fracture lines consolidate in the characteristic
Y-pattern, and no colour shift, which would correspond to the physis closing from anteromedial
to anterolateral with advancing age, was observed.

A second fracture map was produced with two years added to female age, the mean age
difference between sexes found in our cohort, to try to negate the bone-age difference from
males (Figure 5)."® This fracture map also did not reveal a colour shift along the supposed
physeal closure with age (Figure 1). The fracture map grouped by both age and sex (Figure é)
again shows the Y-pattern in all different age groups and sex.

Even when mapping the minor fractures lines (i.e. those that do not go through cortical
bone; Figure 7), the characteristic Y-pattern can still be observed. Like major fracture lines,
the minor fracture lines seem to occur in the vector of the forces between the anterior and
posterior inferior tibiofibular ligaments (Figure 7), and the medially fused physis or deltoid
ligament.

When sorted by physeal closure (open versus partially closed, Figure 8), the Y-pattern
can be appreciated for both open and partially closed. None of the produced fracture maps
conformed to the expected transition in fracture lines as presented in Figure 1.
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Figure 3. Fracture maps superimposed on the right-sided template. Girls are presented in pink, and
boys in blue.
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Figure 4. Triplane and Tillaux fracture maps sorted by age. Ages are presented from young to old (pink
to light blue).
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Figure 5. Fracture maps grounded by age, where girls’ age was adjusted by two years to match the
suggested two year difference in bone age.
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CHAPTER 7

Figure 6. Fracture maps split by age and gender. On the left girls, on the right boys and from top to
bottom from 11 to 16 years old.
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Figure 7. Minor fracture lines recorded from 2- (pink) and 3-part (blue) Triplane fractures, with in red the
attachments (anteriorly) of the Anterior Tibiofibular Ligament and (posteriorly) the Posterior Tibiofibular
Ligament.
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Figure 8. Fracture lines sorted by open physis (blue) versus partially closed (pink).
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DISCUSSION

This retrospective multicentre cohort study set out to evaluate whether triplane fractures
correlate with the asymmetric closing physis (Figure 1) and age, at the level of the joint.
However, we did not find that the hypothesized shift or pattern of fractures following closure
of the physis from anteromedial to anterolateral with age. In addition, 11% of triplane fractures
occurred with a completely open physis. Thus, our study acknowledges the weakness created
by the physis in the paediatric distal tibia; however, contrary to what was previously assumed,
it challenges the theory that the closing physis is the principal determiner of the fracture
pattern at the joint level in these injuries.

The major strengths of our study include the collection of thin-slice CT scans from two
level | trauma centres and one specialized paediatric hospital covering two different continents,
along with collaboration of an experienced paediatric orthopaedic surgeon to classify the
different fracture types and qualitatively assess the fracture maps. Another strength is that
all triplane fractures that present in the emergency departments of our centres undergo
a CT scan, reducing the effect of a possible selection bias. Further strengths are the use
of standardized axial views, and the largest cohort of patients presented in the literature.
Limitations are that this study was retrospective, which reduces analysis of the imaging and
the recorded parameters following the trauma. Another limitation is that it was not possible
to quantify the level of physeal closure due to its complex 3D geometry, and thus we grouped
partially closed physes of varying degrees together. There does not appear to be a reliable
method to quantify closure on the CT scan of the fractured side, and, in addition, we did not
have a CT scan of the contralateral unaffected side for comparison.

Our study of 83 patients is the largest dataset of triplane fractures worldwide. Hadad et al®
used a fracture map of triplane fractures to suggest optimal treatment for each respective Il-,
Ill-, IV-, and V-part fractures. The current study builds on this by including a larger dataset and
fracture maps that are grouped not only by classification but also by sex, age, minor fracture
lines, and extent of closure of the physis. Several studies in the literature have reported on the
characteristic Y-pattern (or ‘Mercedes-Benz star')*'*2, which was also found in our study. In
comparison with other papers which present methods for optimal fixation or evaluate the use of
CT scans in these injuries*®'%22, the current study is the first to challenge the theory originated
by Kleiger and Mankin in 19642, and improves our understanding of the effect of the physis
and the pathoanatomy of these complex injuries. In addition to other studies in literature?-%,
our study reports a subset of patients with a completely open physis.

Overall, the fracture maps between females and males are very similar. Nonetheless,
according to the established teaching, fracture lines in different age groups can be expected
to follow the characteristic fusion of the physis, and thus produce a predictable pattern per
individual age; however we did not observe this. Most importantly, one would expect there
to be a difference between the fracture maps of 11 and 16 years. Interestingly, when fracture
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maps were grouped by age, the distribution was random and no shift along the fusion path of
the physis could be detected. This could be due to masking by the commonly held view that
there is a two-year difference in bone age between males and females; however the distribution
of the subsequent map with two years added to female biological age to overcome this did not
reveal a pattern related to physeal closure.

Clement and Worlock?® built on the findings of Kleiger and Mankin®in 1964 and hypothesized
in 1987 that presence of a medial hump in the epiphysis could be the leading factor in triplane
fractures patterns with an open physis. This hump was posited to stabilize the open physis
medially, similar to the early medial fusion.? Together with the deltoid ligament, medial
stabilization due to a medial hump, and laterally with the anterior inferior tibiofibular ligament
(AITFL) and posterior inferior tibiofibular ligament (PITFL) could explain the factors causing
the Y-pattern. However, there are many fracture lines, including those with an open physis,
that cross the medial hump, which questions the role of the medial hump in the pathoanatomy
of these injuries, and instead perhaps medial fusion or the deltoid ligament are greater
determinators. We believe that there are two reasons why the medial fracture line has more
variation. First, the fibers of the deltoid ligament run in a vertical fashion (as opposed to the
anterior/posterior TFL where the direction is horizontal) and it is easier to provoke a fracture
in line with the fibers. More importantly though, the actual attachment of the deltoid ligament is
below the level we have looked for fracture lines. Therefore, protection by the deltoid ligament
is limited, if not lacking at that exact point, hence providing the opportunity for more variation
in the fracture line. However, we believe that most medial fracture lines exit the cortex in line
with the characteristic Y-pattern, which has been confirmed by other studies.*'"-?!

The anterolateral fragment seems to be a consistent component with minimal variation
in size. It could be argued that there is a Tillaux fracture in each Ill-part triplane, which could
be explained by the way the AITFL pulls on the anterolateral part of the distal tibia during
external rotation. The ubiquity of the Tillaux fragment in triplane fractures is an argument
against the physis as the primary reason for the configuration of these unique fractures. In
addition, the convex Tillaux fragment fits well with a pulling force from the AITFL and seems
to go against the expected concave fracture lines if they would follow closure of the physis
as the main determiner. The fact that ligaments play an important role in these injuries is
further strengthened by the superimposed map of the minor fracture lines, which are all
located between the two tibiofibular ligaments and the medial deltoid ligament and follow
the characteristic Y-pattern. However, our study is unable to differentiate between ligaments
serving an ‘active’ role by pulling on the fragments or a ‘passive’ role in protecting those areas
of the tibia from a fracture exiting; or, indeed, acting as a stress riser to the adjacent bone
and therefore a common place for a fracture line to occur. In adults, anterolateral avulsions
of the tibia (Tillaux-Chaput fracture) and posterolateral avulsions (Volkmann fracture) by the
tibiofibular ligaments, albeit rare injuries have been reported.?’-® These injuries are found
to occur in isolation,?3*® and in exceptional cases simultaneously,?”?? indicating that even in
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adults with a fused physis, these ligaments produce forces capable of avulsing parts of the
tibia. This would support our theory that in a distal tibia weakened by the physis, the ligaments
play an important role in the pathoanatomy of the injury. In addition, the Y-pattern described
in our study is very similar to the pattern reported in adult tibial pilon fractures by Cole et al,’
which are injuries caused by high-energy axial impacts on the tibial plafond, in contrast to the
lower-energy rotational type triplane fractures.

This study acknowledges the weakness that the physis creates in the paediatric distal tibia.
However, it challenges the theory that the physis is the principal determiner of the configuration
of the fracture pattern in triplane fractures at the joint level. Instead we advance the view
that the role of the insertions or forces of the tibiofibular ligaments are more important
determinators, rather than the actual extent of closure of the physis. Therefore, we conclude
that age at time of injury and assumed extent of physeal closure with age are not the main
determinants for the configuration of these injuries at the level of the joint.

Take home message
The physis creates a weakness in the paediatric distal tibia, and the role of the insertions
or forces of the tibiofibular ligaments are the most important determinators of the triplanar
fracture pattern.

Therefore, age at time of injury, and assumed extent of physeal closure with age, are not
the main determinants for the configuration of these injuries at the level of the joint.

SUPPLEMENTARY MATERIAL

Visual overview of inclusion process of this study.
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ABSTRACT

Aims

Paediatric triplane fractures and adult trimalleolar ankle fractures both arise from a supination
external rotation injury. By relating the experience of adult to paediatric fractures, clarification
has been sought on the sequence of injury, ligament involvement, and fracture pattern of
triplane fractures. This study explores the similarities between triplane and trimalleolar
fractures for each stage of the Lauge-Hansen classification, with the aim of aiding reduction
and fixation techniques.

Methods

Imaging data of 83 paediatric patients with triplane fractures and 100 adult patients with
trimalleolar fractures were collected, and their fracture morphology was compared using
fracture maps. Visual fracture maps were assessed, classified, and compared with each other,
to establish the progression of injury according to the Lauge-Hansen classification.

Results

Four stages of injury in triplane fractures, resembling the adult supination external rotation
Lauge-Hansen stages, were observed. Stage | consists of rupture of the anterior syndesmosis
or small avulsion of the anterolateral tibia in trimalleolar fractures, and the avulsion of a
larger Tillaux fragment in triplanes. Stage |l is defined as oblique fracturing of the fibula at the
level of the syndesmosis, present in all trimalleolar fractures and in 30% (25/83) of triplane
fractures. Stage Il is the fracturing of the posterior malleolus. In trimalleolar fractures,
the different Haraguchi types can be discerned. In triplane fractures, the delineation of the
posterior fragment has a wave-like shape, which is part of the characteristic Y-pattern of
triplane fractures, originating from the Tillaux fragment. Stage IV represents a fracture of
the medial malleolus, which is highly variable in both the trimalleolar and triplane fractures.

Conclusion

The paediatric triplane and adult trimalleolar fractures share common features according
to the Lauge-Hansen classification. This highlights that the adolescent injury arises from
a combination of ligament traction and a growth plate in the process of closing. With this
knowledge, a specific sequence of reduction and optimal screw positions are recommended.



INTRODUCTION

Triplane fractures are a unique type of transitional fracture that occur during the gradual
closure of the physis in children, and often present in those aged 12 to 15 years. The term
triplane was applied in 1972 by Lynn' and describes a fracture in three planes: sagittal through
the epiphysis; axially splitting the physis; and finally exiting the metaphysis in a coronal plane.
Closure of the physis is thought to follow a pattern starting centromedially, extending then
posteriorly and laterally, before closing completely anterolaterally. It was generally accepted
that the extent of physeal closure determined the fracture pattern, based on earlier studies
using radiographs.’ It is assumed that triplane fractures result from a supination external
rotation injury.® ¢ However, further clarification of the exact sequence of injuries that occurs in
different planes of the bone is required. Understanding of the precise nature and displacement
of these fractures is essential for optimal treatment.

In contrast to the limited studies describing supination external rotation injuries in
paediatrics, the injury mechanism is well described in adults. In 1954, Lauge-Hansen’ described
various trauma mechanisms in adult ankle fractures, including the supination external rotation
injury. Trimalleolar ankle fractures will have completed the four stages of a supination external
rotation injury as described by Lauge-Hansen: rupture of the anterior tibiofibular ligament or
avulsion of the Tillaux fragment; oblique fracture of the fibula at the level of the joint; fracture
of the posterior malleolus; and finally rupture of the deltoid ligament or a medial malleolar
fracture. For adolescents, it has recently been described that ligaments around the ankle
joint - rather than only the physis - are a major contributor to the pathophysiology of triplane
fractures.® Our study explores whether the fracture pattern of triplane fractures follows the
supination external rotation sequence of the Lauge-Hansen classification.

Fracture maps may help to improve our understanding of fracture patterns. Fracture
maps consist of a collection of fracture lines from a specific type of fracture, superimposed
and fitted to a template to improve the process of comparison and analysis. This helps in
elucidating fracture patterns and suggestions for fixation of several types of injuries such as
triplane, tibial pilon, scapular, posterior malleolar, tibia plateau, and scaphoid fractures.®'s
Using fracture maps, it would be helpful to compare triplane fractures to trimalleolar fractures
that are assumed to share an identical trauma mechanism. From this our knowledge regarding
the pathophysiology of paediatric fractures can be expanded. From a treatment perspective,
reversing this sequence of injuries could help in understanding how to perform fracture
reduction and establish optimal screw positions for these fractures.

We hypothesize that the injury mechanism of triplane fractures in adolescents is
comparable to that of trimalleolar fractures in adults. Hence, our research question was: what
are the differences and similarities between the adolescent triplane and the adult trimalleolar
fractures for each stage of the Lauge-Hansen classification?
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METHODS

In this comparative diagnostic imaging study, imaging data of paediatric patients with triplane
fractures and adult patients with trimalleolar fractures were collected, and their fracture
morphology was compared using fracture maps.

All patients aged between ten and 18 years with an ankle CT scan who presented
between January 2010 and June 2020 in two level 1 trauma centres (University Medical
Centre Groningen, the Netherlands, and Flinders Medical Centre, Adelaide, Australia) and one
specialized paediatric hospital (Women'’s and Children's Hospital Adelaide, Australia) were
identified. The imaging data of these patients were then reviewed by a fellowship-trained
paediatric orthopaedic surgeon (JR) and classified as triplane (AO/Orthopaedic Trauma
Association (AO/OTA) 43t-E/6.1', defined as an epiphyseal fracture in the axial, coronal, and
sagittal plane, including a posterior metaphyseal component) or Tillaux (AO/OTA 43t-E/5.1)%.

Imaging data of 83 patients with triplane fractures were collected for further fracture-
mapping analysis. A total of 45 (54%) were male and 38 (46%) were female. Mean ages were
14.4 years (11 to 18) for males and 12.5 years (11 to 15) for females (p < 0.001, independent-
samples t-test).

Patients who sustained a trimalleolar ankle fracture were identified in our hospital in
Australia between June 2015 and January 2021. These patients were subjected to the same
inclusion and exclusion criteria as the patients with triplane fractures except that age >18
years was used. The fractures were classified as trimalleolar fractures by an experienced
fellowship-trained trauma surgeon (JR) based on the preoperative CT scan.

The inclusion criteria for both datasets were availability of a preoperative CT scan with
slices of 1 mm thickness or less, and presence of a transitional distal tibial/trimalleolar
fracture. Exclusion criteria were: presence of an old or pathological fracture; CT scan
unavailable or only with slices thicker than 1 mm; and presence of other disorders such as,
but not limited to, osteomyelitis, joint infections, or other fractures (excluding fibula fractures).

Imaging data of 100 patients with a trimalleolar fracture were identified. A total of 29 (29%)
were male and 71 (71%) were female. The mean age was 53 years (18 to 82).

Fracture classification

Patient characteristics such as age at injury and sex were recorded. CT scans were exported
from the picture archiving and communication system (Vue; Carestream, USA) as DICOM files.
All CTs were assessed, and fractures were classified using the axial, coronal, sagittal, and 3D
CT reconstructions in Horos v. 3.3.6.

Fracture mapping
In line with our previous study’s fracture-mapping methodology®, we digitally captured a
series of paediatric triplane fractures as well as adult trimalleolar fractures. Standardized
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axial views were created, located 3 mm above the distal tibial subchondral surface, a method
described by Cole et al."® in their work on articular mapping of adult Pilon fractures. As the
reference template, a healthy right adult ankle was chosen. Recorded CT slices were adjusted
as necessary, which included mirroring, resizing, rotating, and normalizing them to match
the template tibia's dimensions using Photoshop 2023 v. 25.1.0 (Adobe, USA). This adjustment
process began with aligning specific tibial landmarks, starting with the intact posteromedial
tibia. For fractures with multiple displaced fragments, digital reduction was performed. Finally,
the fracture lines on each recorded axial slice were manually traced using a built-in pencil
brush with a four-pixel size and superimposed onto the template.

Statistical analysis

Patient characteristics were reported as means and ranges, or numbers and percentages.
Comparison of means between two groups was performed by using the independent-samples
t-test, and if data were not normally distributed the Mann-Whitney U test was used. A p-value
<0.05 was considered statistically significant. The primary study goal was to assess the
association between the paediatric triplane and adult trimalleolar fractures. To achieve
this, fracture maps were visually assessed, compared with each other, and related step by
step to the progression of injury according to the Lauge-Hansen classification. The fracture
maps were assessed by a panel of five fellowship-trained surgeons, until consensus was
reached regarding the description of the fracture pattern for each stage in the Lauge-Hansen
classification. The surgeons individually received the fracture maps and were asked for each
stage of the Lauge-Hansen classification about the entry and exit points of the fracture lines,
and the size of the fragment, and to compare these between paediatric and adult fractures.
The results were collected and then discussed in a consensus meeting.

RESULTS

Trimalleolar and triplane Lauge-Hansen sequence of injury

Supination external rotation injuries in adults following the progressions as described by
Lauge-Hansen start with Stage |, the rupture of the anterior syndesmosis or small avulsion
of the anterolateral tibia as depicted on the fracture map (Figure 1).

In paediatric patients, the external rotation force places stress on the anterior
syndesmosis, causing a fracture of the distal tibial epiphysial plate anterolaterally, known as
Tillaux fracture (Figure 2).

On the fracture map, the fracture line originates ventrally on the tibia, progresses towards
the central area, and then extends towards the tibiofibular joint (Figure 1, 3, and 4).
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Posterior

Fig. 2 Wave-like configuration of the posterior fragment in triplane fractures. The wave-like pattern of the
posterior malleolar fracture line is part of the overall Y-pattern that is characteristic of triplane fractures.

Trimalleolar Triplane

Fig. 3 Sequence of injuries in adult trimalleolar as compared to paediatric triplane fractures.

Stage Il of the trauma mechanism is defined as oblique fracturing of the fibula at the level of the
syndesmosis (OTA/AO type 44B)' (Figure 1 and Figure 4). This was present in all trimalleolar
fractures, and in 30% (25/83) of triplane fractures. Fibula fractures were recorded, but not
mapped, since the fibula fracture lines were proximal to the level of the fracture maps, and
may pass variably through the distal fibular growth plate.

In adults, stage lll represents an external rotation force advanced to the point where either
the posterior syndesmosis is ruptured or a fracture of the posterior malleolus occurs (Figure
3). On the trimalleolar fracture map, many fracture lines signifying a posterior malleolar
fracture can be observed (Figure 1). If these lines are closely analyzed, the three different
Haraguchi types can be discerned: Type |, characterized by one large isolated fragment; Type
II, consisting of two fragments that overlap and of which one extends anteromedially; and Type
11, which consists of small shell-like fractures.!”

149




CHAPTER 8

Stage | Stage Il Stage Il Stage IV

Trimalleolar

Triplane

Fig. 4 3D representation of the sequence of injuries in trimalleolar versus triplane fractures.

When appreciating the comparative fracture lines on the triplane fracture maps, the
configuration is slightly different from trimalleolar fractures in adults, as a large anterolateral
fragment (Tillaux) is already avulsed during stage | in these paediatric patients (Figure 1). The
fracture line of the Tillaux fragment, extending from the tibiofibular joint to the central region
of the tibia, marks the onset of the posterior malleolus fracture. At stage lll of the triplane
fracture, this fracture line is extended posteromedially. This results in a wave-like pattern
of the fracture line, initiated at the posterolateral end of the Tillaux fragment and exiting
posteromedially (Figure 2 and Figure 4). This wave-like pattern of the posterior malleolar
fracture line is part of the characteristic Y-pattern of triplane fractures.8

Finally, stage IV presents full external rotation and fracture of the medial malleolus or
rupture of the medial deltoid ligament (Figure 3). In the trimalleolar fracture map, this is
evident by fracturing of the medial malleolus in two ways. One way the fracture lines exit the
medial malleolus on the fracture map is as part of the Haraguchi Type 2, where the fracture
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line extends medially and splits the medial malleolus in the sagittal plane. The second way
consists of fracture lines that run from anteromedially to posteromedially, which split the
medial malleolus in the coronal plane instead of the sagittal plane, and exit in a similar location
to the aforementioned fracture lines.

The medial malleolar fractures as part of trimalleolar fractures are more variable in
fracture pattern than those that are part of triplane fractures (Figure 1). Stage IV of triplane
fractures consists of a fracture line that mostly originates at the posterior fragment, extends
medially, and splits the medial malleolus in the sagittal plane (Figure 4).

DISCUSSION

Recently, we questioned the role of the physis as the main determiner of triplane fractures, and
instead showed that a partially closed physis is the requisite while ligaments determine the
fracture pattern.® We found that both the paediatric triplane and adult trimalleolar fractures
follow the stages as described by Lauge-Hansen, highlighting that the distinctive fracture
pattern in adolescents arises from a combination of ligament traction and a growth plate in
the process of closing. With this new knowledge, together with existing literature, optimal
screw positions and sequence of fixation can be recommended.

This study has some strengths and some limitations. Important strengths of this study
are the inclusion of patients with thin-slice CT scans, the use of the largest cohort of triplane
fractures in the literature, and the assessment of the fractures by several experienced
surgeons including a fellowship-trained paediatric orthopaedic surgeon. Limitations include
the retrospective design of this study, making it difficult to verify the trauma mechanism of
these patients. Another limitation is the lack of MRI scans as a standard of care for enrolled
patients, preventing us from directly assessing ligamentous injuries through imaging.

Hadad et al.” were the first to employ the fracture map technique with 33 triplane fractures,
and described the most common fracture patterns of triplane fractures. Our paper builds on
their findings by assessing 83 triplane fractures and comparing these to fracture patterns
of trimalleolar fractures. We explored the involvement of ligaments in triplane injuries, and
challenged the commonly taught theory that physis is the main determinant of fracture
pattern in triplane fractures. While acknowledging the weakness associated with the physis,
we propose that the role of ligaments exceeds that of the physis in these injuries.® Although
this concept might offer an innovative perspective on fractures in adolescents, the literature
on fractures in adults already indicates that ligaments play a crucial role in intra-articular
fractures, contributing to the development of specific fracture patterns in proximal humerus
and distal radius fractures.'®'” However, it is still unclear if that is an ‘active’ role pulling off
the fragments, or ‘passive’ in protecting the bone where it attaches to the bone.
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If ligaments play a crucial role in triplane injuries, the pattern for supination external
rotation injuries should be reasonably predictable and consistent, independent of the presence
of a partially open physis. When compared with the adult trimalleolar fractures that result
from the same trauma mechanism, we found similarities across all stages of the Lauge-Hansen
classification.’

Stage | represents a rupture of the anterior syndesmosis or avulsion of the anterolateral
tibia. As ligamentous ruptures cannot be reliably detected on CT scans, these were not
captured in the fracture maps. For both fractures avulsion of the anterolateral tibia (the Tillaux
fragment) can be appreciated. The fragments of the triplane fractures are larger in size than
in the trimalleolar fractures, most likely caused by the weakness created by the physis where
the balance between the opposing forces (posterior syndesmosis, and medial fusion or deltoid
ligament) is closer to the centre of the tibia.

Stage Il shows similarity between the two injuries, as all trimalleolar fractures have an
oblique fracture of the fibula, and a substantial number of the triplane injuries have a similar
fracture pattern. However, the fibula is more likely to remain intact in paediatric patients
compared to adults for a few reasons: 1) we observed that most paediatric patients have a
certain degree of plastic deformation in the fibula without fracturing it; and 2) in paediatric
patients, a lot of the energy is already absorbed by the formation of a large Tillaux fragment.
This supports the notion that trimalleolar as well as triplane fractures follow a supination
external rotation pattern.

Stage Ill results in fracturing of the posterior malleolus in both adult trimalleolar and
adolescent triplane fractures, albeit with a slightly different configuration. The trimalleolar
posterior fragment has a concave fracture line, which starts between the middle and posterior
thirds of the tibia and exits posteromedially in the middle of the tibia. For the triplane, weakness
created by the physis allows fracturing of a larger anterolateral Tillaux fragment, as there is
less inherent strength of the bone in the epiphysis.??° Hence, fragment size is determined by
the counter forces of the opposing ligaments, such as the posterior-inferior tibiofibular and
the medial deltoid ligaments.

Stage IV is the final step of the sequence of injuries, where full external rotation has
occurred, with fracturing of the medial malleolus or rupture of the deltoid ligament. The
attachment site and fibre orientation of the deltoid ligament probably have a considerable
influence on the fracture pattern in the medial malleolus.® In general, the fracture pattern of the
medial malleolus, as part of trimalleolar fractures, demonstrated greater variability compared
to those occurring within triplane fractures. Our findings are in line with the extensive fracture
maps provided by Liu et al.?’ who demonstrated great variation in fractures of the medial
malleolus in adults. Moreover, it is likely that triplane fractures do not solely result from
rotational forces but also involve an adduction component, which could contribute to the
variability in the fracture pattern of the medial malleolus.???* However, some identical fracture
lines can be appreciated in trimalleolar and triplane fractures. In paediatric triplane fractures,
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UNDERSTANDING THE MECHANISM OF INJURY AND FRACTURE PATTERN

medial malleolar fractures usually arise as a medial extension of the posterior fragment. In the
adult trimalleolar fractures, this extension is also observed in the Haraguchi type 2 fractures
(i.e. medial-extension type).

The similarities between triplane and trimalleolar fractures found in the current study
reflect the importance of injury mechanism and ligamentous forces in these injuries. The
insights gained from our study regarding the mechanism and sequence of injuries may help
to understand the manoeuvres which would enable reduction of these fractures. We propose
that minimally displaced triplane fractures should undergo anterior directed force to reduce
the medial and posterior fragment (i.e. reversing stages 3 and 4), followed by reduction of the
anterior fragment using internal rotating forces (i.e. reversing stages | and II). Subsequently, a
cast should be applied to preserve internal rotation and prevent secondary displacement.?2
Further, the findings assist in understanding appropriate screw positions for surgical treatment.
Hadad et al.? described different screw locations for fixing triplane fractures based on fracture
mapping. In addition, Sheth et al.? performed a similar study, albeit without a fracture map,
where they suggest screw angles based on axial CT slices. These studies suggest several
screw trajectories, but this is not substantiated by a detailed analysis of the sequence of
injuries around the ankle. Moreover, those studies do not suggest in what order to stabilize
these injuries. We recommend reversing the sequence of injuries, first reducing with anterior
directed force and fixing the posterior (medial) fragment using an anteroposterior screw (i.e.
reversing stages Ill and 1V), usually leaving the fibula fracture (stage 2), and then reducing
with internal rotation and fixing the Tillaux fragment with an anterolateral to anteromedial
screw (or vice versa, i.e. reversing stage 1) (Figure 5).

Fig. 5 Recommended screw placement for treatment of triplane fractures reversing the sequence of
injuries.
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This study shows major similarities in supination external rotation injuries, as described by
Lauge-Hansen’, between adults with trimalleolar fractures and adolescents with triplane
fractures at the level of the joint. Based on the injury mechanism, we identified a sequence
of injury consisting of four stages in triplane fractures. The characteristic fracture pattern
results from a combination of pulling and stabilizing forces of ligaments and weakness due to
a partially open growth plate.
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ABSTRACT

Background

Despite the ubiquity of ankle fractures in daily practice and the following surgical experience
and comfort with these injuries, outcomes do not match the expectations. It is still unclear why,
although some studies revealed Haraguchi classification and fracture severity to be important.
In this study we explored the effect of ‘subtle’ factors on outcome, for example loose bodies
and malpositioned hardware.

Methods

This study performed a retrospective review of 102 prospectively collected anonymous
postoperative Computed Tomography (CT) scans of adult patients with ankle fractures from
the randomized clinical EF3X-trial. All included patients completed the Foot and Ankle Outcome
Score (FAOS) at two years post-operatively. Subtle factors hypothesised to affect outcome
were: 1) loose bodies in the ankle joint or syndesmosis; 2) (marginal) medial and/or lateral
impaction; 3) posterior malleolar edge impaction and/or comminution with incarcerated
fragments; 4) talar osteochondral defects; 5) quality of reduction of tibia, fibula, and
syndesmosis, and 6) malpositioned hardware. These were manually recorded and a majority
consensus of three independent observers was used. These factors were used to evaluate if
there was an association with the FAOS domains.

Results

There are no significant differences for all FAOS domains between AO/OTA types A (n=6),
B (n=74) and C (n=22). Univariate analysis for the ‘subtle’ factors revealed that Haraguchi
classification, sex, loose bodies, posterior malleolar incarcerated fragments and malpositioned
hardware significantly affected two or more FAOS domains. Specifically, loose bodies resulted
in significantly lower outcomes in: Pain, Activities of Daily Living and Quality of Life. Multivariate
analysis with adjusting for confounders revealed ‘Haraguchi classification’ and ‘loose bodies’
to be significant contributing factors.

Conclusion

In AO type 44 ankle fractures, loose bodies in the joint or syndesmosis, significantly affect
patient reported Pain and Quality of Life at two years postoperatively. During surgery, effort
should be made to identify and remove loose bodies.

Clinical relevance of the paper / Take Home Message
* During surgery, effort should be made to identify and remove intra-articular loose
bodies using the pre-operative CT scan.



INTRODUCTION

Ankle fractures are one of the most common fractures with an incidence of 179 per 100.000
person-years'. Most of these fractures are low-energy rotational types as described by Lauge-
Hansen in 19502, A small percentage are high-energy axial tibial pilon fractures with extensive
soft-tissue damage—which can be considered a different type of injury from what is commonly
considered an ankle fracture, and often requires a multi-disciplinary approach®*. In contrast to
the high volume of rotational type ankle fractures, and thus surgeons with a lot of experience
and comfort treating these injuries, outcomes following operative fixation are still suboptimal.
For example, common short-term and long-term consequences such as reduced mobility,
chronic pain, and early posttraumatic osteoarthritis’? are often reported. Large cohorts are
scarce, but multiple smaller studies report 21-64% poor or fair outcome'®™. The landmark
study by Egol et al.’, reports up to 37% of patients suffering from a form of limitation one year
postoperatively after an AO/OTA type 44 ankle fracture.

It is still unclear why such a common fracture, in which surgeons have a lot of experience
and confidence in their abilities to optimally treat these injuries, has relatively poor outcome.
There have been a few studies reporting specific characteristics that are associated with poor
outcome, such as posterior malleolar involvement, particularly Haraguchi type 2 fractures
extending medially®. Another long term outcome study'” reports fracture severity, trimalleolar
involvement and Body Mass Index (BMI) to be significant factors associated with poorer clinical
outcome. The authors, however, do not report any correlation between outcomes, fracture
morphology and articular involvement as quantified with postoperative computed tomography
(CT). Besides pathophysiological theories, two studies” '® advocate for the role of mental health
as one of the main factors associated with long term recovery.

Elucidating prognostic factors that affect outcome is crucial to adequately inform patients
following their trauma and improve surgical decision making. So far, common factors like age,
fracture severity and morphology have not been able to explain the variability in outcomes and
treatment of these common fractures. Hence, treatment is often based on the experience of the
treating surgeon where one would expect more evidence-based (shared) decision making in
this era. Perhaps ‘subtle’ surgical and pathoanatomic factors such as quality of postoperative
reduction', loose bodies or malpositioned hardware can predict outcomes more accurately
following rotational type ankle fractures.

Therefore, we aimed to retrospectively evaluate factors associated with functional
outcome in a prospective consecutive cohort of patients with rotation type ankle fractures with
pre- and postoperative CT scans. The current study aimed to answer the following questions:
1) What are Foot and Ankle Outcome Scores (FAQOS) for simple ankle fractures two years
postoperatively; and 2) What are (subtle) factors associated with functional outcome in these
injuries, including advanced imaging analysis of pre- and postoperative CT scans?
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METHODS

In accordance with the Declaration of Helsinki", our Institutional Review Board (IRB) approved a
retrospective review of prospectively collected anonymous Computed Tomography (CT) images
of adult patients with ankle fractures from the randomized clinical EF3X-trial?®, (Dutch Trial
Register NTR 1902). The primary aim of the EF3X-trial was to evaluate the effect of intraoperative
use of 3D-fluoroscopy compared to 2D-fluoroscopy alone on the quality of fracture reduction,
in operatively treated calcaneal, wrist and ankle fractures.?® Qur group previously reported
on quantification of three-dimensional CT (Q3DCT) in posterior malleolar ankle fractures by
secondary retrospective analysis of this prospective cohort of consecutive patients.'¢:2" 22
Similar methodology, as described earlier in our previous study that identified factors of
outcome of posterior malleolar fractures, was used.” In short, in the current study all patients
with an ankle fracture who were prospectively included in the EF3X-trial, were retrospectively
included for secondary analysis.?’ All included patients completed the Foot and Ankle Outcome
Score (FAOS)® at two years postoperatively. As part of the EF3X-trial, all patients underwent
postoperative CT scanning (Somatom Definition AS+; Siemens, Erlangen, Germany) within one
week after surgery and resulting in thin-slice (<1 mm) reconstructions of the injured leg. These
were saved as anonymous Digital Imaging and Communications in Medicine (DICOM) files. Post-
operative CT scans were used as reference standard in the EF3X-trial?*® and the secondary
analysis of EF3X study data with advanced imaging analysis was used for the current study.

Research Questions

For the primary research question the cohort of malleolar ankle fractures (i.e., AO/OTA type 44'9)
was analysed per fracture type (A, B or C) by using the respective domain scores of the FAOS (i.e.,
Symptoms, Pain, Activities of Daily Living (ADL), Sports and Quality of Life (QoL)) at two years
postoperative. For the second research question, the potential ‘subtle’ factors associated with
outcome in rotational type ankle fractures were correlated to the same FAOS domain scores.

Patients

From the EF3X-trial total of 176 patients?, the current study retrospectively included a total of
102 patients with a ‘simple’ rotational type ankle fracture (AO/OTA Fracture Classifications'®;
44-A, -B and -C) with a completed FAOS at two years postoperative. The 74 excluded patients
all had a Pilon tibial fracture; AO/OTA type 43'. Patients were all treated according to the
conventional AO principles of open reduction and internal fixation according to surgeons’
discretion. Mean age at surgery was 46.5 (+14.7) years, and of all patients: 46 (45%) were male
and in 51 (50%) patients the right ankle was injured. A total of 23 (23%) patients smoked during
the period of inclusion. The trauma mechanism ranged from: low energetic trauma (LET) from
fall (n=76), high energetic trauma (HET) from fall (n=3), HET motor vehicle accident (n=6), and
‘other’ or unknown (n=17). Baseline characteristics are reported in Table I.
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Table I. Baseline demographics and fracture characteristics

Characteristics

Total

Sex. n (%)
Male
Female

Side of ankle fracture. n (%)
Left
Right

Mean age at surgery. yrs (SD)

Smoking. n (%)
Yes
No
Unknown

Trauma Mechanism. n (%)
LET - Fall
HET - Fall from height
HET - MVA
Other or unknown

AO/OTA Fracture Classification. n (%)
A
B
C

Revision Surgery within 6 weeks of operation. n (%)
Non-satisfactory post-operative result
Infection

Revision Surgery within 12 weeks of operation. n (%)
Removal of Syndesmotic Screw(s)
Removal of Gentamycine beads
Infection

Revision Surgery within one year of operation. n (%)
Complaints of osteosynthesis material
Removal of Syndesmotic Screw(s)
Infection

Malunion corrective osteotomy

(50)
(50)
46.5(14.7)

(22)
(68)
(10)

(75)
3(3)
6 (6)
(16)

163



Table I. Baseline demographics and fracture characteristics (continued)

Characteristics Total

Foot and Ankle Outcome Scores, Means (0-100), Standard Deviations

Symptoms (x16)
Pain (224)
Sports and Recreation (x29)
Activities of Daily Living (x22)
Quality of Life (x25)
Subtle Predictors. n (%)
Loose body in joint (22)
Loose body in syndesmosis (40)
Medial tibial impaction (14)
Lateral tibial impaction 1(1)
Posterior malleolar edge impaction (36)
Posterior malleolar comminuted with incarcerated fragment(s) (37)
Talar osteochondral defect 1(1)
Quality of reduction fibula. n (%)
Adequate (88)
Poor (12)
Quality of reduction tibia. n (%)
Adequate (88)
Poor 7(7)
N/A 5(5)
Quality of reduction syndesmosis. n (%)
Adequate (75)
Poor (20)
N/A 6(6)
Malpositioned hardware. n (%)
Screw in ankle joint 4 (4)
Screw in syndesmosis (15)
Fibula screw grinding tibia (24)
Screw through fibula and tibia 333
Tibia plate overlapping fibula 1(1)
Protruding screw extra-articular 6 (6)
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Within the first six weeks post-operatively, five patients (5%) had revision surgery for non-
satisfactory postoperative result (n=3), and infection (n=2). Between 6 and 12 weeks, in three
patients the syndesmotic screws were removed, and between 12 weeks and one year post-
operatively, 18 patients (18%) had subsequent surgery, of which the majority (n=12) was
elective implant removal (Table I).

Figure 1. Examples of potential subtle factors that may affect outcomes
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Factors Associated with Clinical Outcome

Potential ‘subtle’ factors associated with clinical outcome analysed in this study were: 1)
loose bodies in the ankle joint or syndesmosis (Supplemental Figure 1); 2) (marginal) medial
and/or lateral impaction; 3) posterior malleolar edge impaction and/or comminution with
incarcerated fragments; 4) talar osteochondral defects; 5) quality of reduction of tibia, fibula,
and syndesmosis, and 6) malpositioned hardware. The majority consensus of three independent
observers (DM, RB, JP), who individually evaluated the presence of the above-mentioned
factors on the included postoperative CT scans with the use of standardized axial, sagittal
and coronal reconstructions, was used.

Definitions of the above-mentioned factors were as follows (Figure 1): 1) loose bodies
were defined as any visible fragments—from small specks of bone to larger fragments—of
bone in the ankle joint or syndesmosis on the postoperative CT in axial, coronal or sagittal
planes; 2) (marginal) impaction was defined as a depression (>2mm) of the articular surface
in the medial or lateral tibial plafond as observer on the sagittal plane in the middle one
third of the tibia; 3) posterior malleolar edge impaction was defined as any impaction of the
posterior malleolus as observer in the sagittal plane in the posterior 1/3 of the tibial plafond,
whereas comminution with incarcerated fragments was scored regardless of impaction; 4)
talar osteochondral defects were defined as a defect of any detectable size of the subchondral
bone on the CT scan; 5) adequate quality of reduction of the tibia was defined as; 5a) an
adequate articular reduction meaning a congruent ankle joint and intra-articular fractures
with a step-off and gap of less than 2 millimetres each in the coronal, sagittal and axial planes;
5b) for the fibula this was defined as having the correct length as measured of the distal talar
facet; 5¢) whereas for the syndesmosis this was defined when the lateral border of the fibula
was in line with the anterolateral border of the tibia; ) Malpositioned hardware (Figure 2)
was defined as: a) screws protruding into the joint or syndesmosis; b) fibular lag screw heads
grinding anteriorly against the tibia (Figure 2); c) incidental screws into other bones—i.e. fibula
screws that protrude into the tibia—but not protruding into the joint (excluding syndesmotic
fixation screws); d) overlapping plates—i.e. a posterolateral tibia plate that also sits on the
posterior fibula—or screws protruding into soft tissues.

Due to clinical overlap of syndesmotic and intra-articular loose bodies, these combined
as ‘loose bodies'. The specific malpositioned hardware subtypes were combined into one
variable—'Malpositioned Hardware'—due to low case numbers individually.

Statistical analysis

IBM SPSS software for Macintosh (version 27; IBM Corp., Armonk, NY, USA) was used for the
statistical analysis. Baseline characteristics were reported as frequencies and percentages
in case of categorical variables, and as means and standard deviations in case of continuous
variables. Variables with less than a total of five cases were excluded from analysis. The
one-way ANOVA was used to determine statistically significant differences between AO/OTA
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types A, B and C for each respective FAOS domain score. First, to identify the association
between the potentially clinically important factors and the FAOS domain scores at two years
follow-up, the independent T-test was used for univariate analysis. A p-value of <0.05 was
used for statistical significance. Second, a multivariate analysis was performed to adjust for
possible confounders (age, sex, AO/OTA fracture type, Haraguchi fracture type and smoking)
and determine the effect and significance of the potentially subtle factors that determine
outcome. For the multivariate, factors that had a significance level of p <0.1 were included in
the model, and with a backward stepwise selection procedure the significant (p<0.05) subtle
factors were identified.

Figure 2. Examples of Mal-Positioned Hardware
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RESULTS

Simple (AO 44) Ankle Fractures Outcomes

The FAOS domains symptoms, sports and recreation, and quality of life have mean scores
between 60 and 70 at two years postoperative. In addition, the FAOS domains pain and activities
of daily living report higher mean scores, 78 and 84, respectively (Table I).

There were no significant differences between AO/OTA fracture types 44 A (n=6), B (n=74)
and C (n=22) for all FAOS domains; Symptoms (p=0.275), Pain (p=0.129), Sports (p=0.141),
Activities of Daily Living (p=0.270) and Quality of Life (p=0.255)(Figure 3). Comparison of each
respective FAOS domain between those with a posterior malleolar fragment (PMF, n=79)
and those without (n=23) also did not reveal statistically significant differences (Table I1).
However, there is a significant difference between outcomes of the Haraguchi types on the
2-year postoperative outcomes for all five domains (Table I1), where Haraguchi type 2 has the
lowest mean FAOS domain scores.

AO Classification
100 044 A
d44B
Odasac
80
35
60 o
40
0155 155
14 14
20
0
Symptoms Pain Sports & Activities of  Quality of Life
Recreation Daily Living

Figure 3. FAOS domains Boxplot clustered by AO classification
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Factors Associated with Outcome in Simple Ankle Fractures
The factors ‘Lateral Tibial Impaction’, ‘Talar Osteochondral Defect’ were excluded from analysis
due to low number of cases (n<5).

The presence of potential subtle factors on postoperative CT scans are reported in Table
I. Univariate analysis for the subtle factors, showed that Haraguchi classification, sex, loose
bodies, posterior malleolar incarcerated fragments on the postoperative CT, and malpositioned
hardware significantly affect two or more FAOS domains (Table I1).

Table Il. Univariate analysis of confounders and subtle predictors for FAOS at two years post-operative
in simple ankle fractures

FAOS FAOS FAOS FAOS FAOS

Confounders symptoms pain ADL sports QoL
Posterior Malleolar Fragment 170 .201 .301 442 .862
Age 981 716 .245 .790 952
Sex .002* .031* .009* .070 .078
AO Classification .275 129 .270 141 .255
Smoking .753 669 677 935 966
Haraguchi Classification .002 <0.001 <0.001 .005 .017

Subtle Predictors FAOS FAOS FAOS FAOS FAOS

symptoms pain ADL sports QoL
Loose bodies .306 .001* .004* .053 .002*
Medial impaction .251 244 109 677 .050*
Posterior malleolar edge impaction 135 .293 367 .902 574
Posterior malleolar incarcerated fragments ~ .008* .005* .014* 140 .041*
Quality of reduction Fibula 212 .869 bbb 137 .890
Quality of reduction Tibia .678 579 941 116 525
Quality of reduction Syndesmosis .405 .583 483 614 .882
Mal-positioned Hardware .020* .068 .047 .052 .059

Specifically, presence of loose bodies (Figure 4) results in significantly lower outcomes in three
of the five FAOS domains (Table I1); Pain 69 versus 85, ADL 77 versus 89, and QoL 57 versus 72.

The majority of patients with loose bodies were AQ™ type 44B3 66% (31/47) compared
to 16% (10/55) in patients without loose bodies, where AQ™ type B1 36% (20/55) formed the
majority. When significant (with adjusted p<0.1) factors were concatenated in a multivariate
analysis, ‘Haraguchi classification’, ‘loose bodies', ‘posterior malleolar comminution with
incarcerated fragments’ and ‘sex’ were significant factors (Table Ill).
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Figure 4. Examples of Loose Bodies in Syndesmosis (left column) and Joint (right column)

Table Ill. Multivariate analysis of subtle predictors for FAOS at two years post-operative in posterior
malleolar ankle fractures

Subtle Predictors sy;?)(t):ms FAOS pain FAOS ADL s':[:(:tss FAOS QoL
Sex .006 - - - -
Posterior Malleolar Comminuted 024 ) ) _ )
with Incarcerated Fragment
Loose bodies - .025 - - .002
Haraguchi
Type | - 166 13 .323 -
Type Il - <.001 <.001 .002 -
Type Il - .867 549 .094 -
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‘Haraguchi type 2" and ‘Loose bodies’ are most significantly associated with outcome in these
patients. Malpositioned hardware, age and AO fracture type classification, did not affect FAOS
scores at two years postoperatively.

DISCUSSION

This study found loose bodies—that were defined as any visible loose bone, ranging from small
specks to larger fragments—in the ankle joint and syndesmosis to be significant factors, even
when adjusting for confounders such as, Haraguchi classification, age, AO classification, gender
and smoking. The presence of loose bodies (either in the joint or in the syndesmosis; Figure 4)
resulted in significantly lower FAOS domain scores Pain (p=0.025) and Quality of Life (p=0.002).

The current study should be interpreted considering its strengths and limitations.
Strengths include a unique high-quality subsequently prospectively collected data of simple
ankle fractures with postoperative CT scans with long term follow-up up to two years
postoperatively. Secondly, three independent observers evaluated all postoperative CT scans.
Limitations include a relatively small number of patients introducing the possibility for a
selection bias. Another limitation is that surgical treatment was not standardized during data
collection, and instead relied on the individual preference of the treating surgeon. Finally,
detection of loose bodies is limited to what can be appreciated on the CT scan and thus those
consisting of just a cartilage component were not included in this study.

Building on the study findings of Blom et al.”®, that reported Haraguchi type to be an
important factor of outcome in posterior malleolar fractures, this study also explored other
factors that could explain the relatively poor outcomes for common simple rotational type
ankle fractures. Rajan et al.” reported that regardless of Haraguchi type, trimalleolar fractures
have worse outcomes compared to bimalleolar. However, in the current study Haraguchi
type was a significant factor and neither AO/OTA fracture type classification’® nor presence
of a posterior malleolar fragment, significantly affect outcomes. The current study reports
an important effect of loose bodies on the two-year postoperative outcomes. Although this
study corrected for the AO classification, it is unclear if ‘loose bodies' have an active role in
outcome or if they signify the extent of damage. However, ‘loose bodies’ playing an active
role is supported by two previously published studies?* % that advocate arthroscopy for that
reason in ankle fractures. Smith et al.? reported improved outcomes following arthroscopic
removal of loose bodies during operative fixation, especially in patients whom suffered an ankle
dislocation injury. Kim et al? advocate the use of arthroscopy during hardware removal when
patients suffer from chronic pain and a problem such as a loose body or ankle impingement
(bony or soft-tissue) has been objectified. In contrast to the beforementioned studies, Fuchs et
al.? reported no improved outcome following arthroscopy in unstable ankle fracture treated
with open reduction and internal fixation (ORIF). All three studies mention 10 to 15 minutes of
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added operating time, and no added complications by employing arthroscopy during ORIF of
these ankle fractures. Considering the minimal risk of using arthroscopy in these injuries, the
reported effect of intra-articular loose bodies on outcomes, it may be a worthwhile technique
to employ.

In conclusion, in ‘simple’ ankle fractures (AO/OTA fracture type 44) a loose body in the
joint or syndesmosis negatively impacts patient reported FAOS domain scores Pain and Quality
of Life at two years postoperatively. During surgery, effort should be made to identify and
remove loose bodies by thoroughly washing the ankle joint or performing an arthroscopy.
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GENERAL DISCUSSION

PARTI EXPLORING CONVOLUTIONAL NEURAL NETWORKS
IN ANKLE FRACTURES

An Increasing Number of Convolutional Neural Networks for Fracture Recognition
and Classification in Orthopaedics: Are these Externally Validated and Ready for
Clinical Application?

Chapter 2 showed that, despite the surge in studies that report great accuracy in detecting
and classifying fractures on radiographs with Convolutional Neural Networks (CNNs), only
a few (4/36) use external validation (EV) in evaluating performance. In addition, this review
highlights that geographical (by location) EV is superior to temporal (separate from training set
by time) EV. The importance of and need for EV is highlighted by many studies; however, this
review shows that EV of CNNs remains scarce. In addition, there is a lack of uniformity in the
method of conducting and reporting of EV. For example, some studies fail to clearly define the
ground truth—the benchmark to which the model is trained. Readers are advised to be cautious
in interpreting performance when evaluation is limited to an internal or temporal validation
set—as geographical EV should be used to assess ‘true’ performance and generalizability.
When conducting a study using a form of Artificial Intelligence (Al), the use of standardized
methodology such as the Clinical Artificial Intelligence Research (CAIR) checklist, Standard
Protocol Items: Recommendations for Interventional Trials—Artificial Intelligence (SPIRIT-
Al), and CONsolidated Standard for Reporting Trials—Artificial Intelligence (CONSORT-AI) are
highly recommended to improve methodological rigor, quality of models, and facilitate eventual
implementation in clinical practice. These checklists also require an external validation of the
results. Since the publication of this study, the field has evolved, and the recommendations
presented in this chapter are being used (standardized methodology) and often required by
journals (external validation). In my opinion, it is not a surprise that due to various challenges,
external validation is scarcely performed. For example, privacy laws and legal departments
of the different hospitals often require many discussions and lengthy documents to be drafted
before sharing of data is allowed. The lengthy legal documents are often a barrier to sharing
large datasets, thereby hampering real progress in the EV of promising algorithms. Therefore,
| expect the field to move towards federated learning—send the model to the data instead of
sending data to the model—and improve the external validity of models and their performance.

178



Artificial Intelligence Fracture Recognition on Computed Tomography: Review of
Literature and Recommendations

In Chapter 3, we explored the current state and benefits of CNNs in computed tomography
(CT) scans and concluded based on 17 studies that for radiologists, CNNs can reduce the time
to diagnosis—such as ruling out rib fractures, useful in the acute trauma setting—and the
number of missed diagnoses on CT scans while increasing diagnostic accuracy. The omission
of EV is rife in studies developing a CNN for orthopaedic trauma, as in line with Chapter 2,
only a minority of studies performed an EV (6/17). We found great heterogeneity in how many
patients were included per study, ranging from 39 to 8529. The phrase ‘the more the better’
often applies to the quantity of data used for training a CNN. However, in this study, there
was no clear correlation between the number of patients and performance. It is likely that
as datasets grow, the effort to create quality data by experts becomes too great, and quality
is sacrificed for quantity. This study does not recommend a minimum of patients to include
but rather advocates for a progressive approach where data is added to the training set until
sufficient performance or a plateau is reached. Three-dimensional models are rare in the field
of computer science, and the use of CNNs for CT and MRI scans has been limited to simple tasks
such as detecting fractures. Once computer scientists can develop advanced models that can
process three-dimensional data, | expect that more studies will explore predictions of CNNs
for clinically important decisions. This could for example mean that in the future patients are
seen in the Emergency Department where imaging is performed, and initial decision-making
is done with support of an Al prediction model. Meaning less wait time in the ER, and hopefully
less ‘ramping’ of ambulances or crowded waiting rooms.

Development and External Validation of Automated Detection, Classification, and
Localization of Ankle Fractures: Inside the Black Box of a Convolutional Neural
Network

In Chapter 4, we developed and externally validated the first convolutional neural network
(CNN) that can accurately detect, classify, and localize fibula fractures, with an accuracy of
89%. Detection and classification of fractures is not new; however, combining these with
segmented (highlighted) localization of fracture lines is. Compared to colleagues Olczak et
al., our model needed only one fourth of the data to achieve a better performance, underlining
the efficiency of training a preliminary CNN to select optimal cases to learn from. One of the
great challenges of these Machine Learning models is that these are essentially a ‘black
box'—it is unclear how they arrive at their predictions. The localization used in this study
provides a visual presentation as to where the CNN predicts a fracture to be, which can
be validated by us—humans. We found that the model—despite its good performance—has
difficulties in differentiating between ‘Weber B’ and oblique ‘Weber C’ fractures. These two
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types look alike in their configuration but are discerned based on their location, at the level of
the syndesmosis or above the syndesmosis, respectively. This also remains a clinical challenge,
where the classification of these two injuries is often ambiguous. As this study progressed, it
became clear that the computer struggles with tasks that humans also find challenging. In daily
practice, this situation is a common occurrence, where patients are regularly informed that it is
unclear if their ankle fracture is stable or unstable, and the need for syndesmotic fixation can
only be assessed intraoperatively with certainty. The localization was initially meant to improve
the accuracy of the model by limiting it to the tibia and fibula. However, a newer model that we
have trained using the same data proved that pointing the model in the general direction of
the fractures using a ‘scribble’ line—akin to drawing a circle on paper to highlight something
of interest—results in better performance, and segmentation turns out to be superfluous.
In addition, this study again iterated that ‘garbage in = garbage out’, as fractures where
surgeons immediately agreed on for its classification were classified with higher accuracy by
the algorithm than fractures that warranted extra discussion to reach a consensus. It must
be noted that the ‘Weber A’ and ‘Weber C’ classifications have a specificity of 100%. Especially
the ‘Weber C’ is interesting, as these often require further assessment for stability and often
require surgical fixation. Thus, this model may have a place in the Emergency Department to
aid junior doctors in recognizing potentially unstable ankle fractures. But may also improve
agreement between surgeons, for example in classifying fractures that are plagued by great
interobserver variability—reducing human bias. The question remains, should we teach the
computer how to classify certain fractures, or once these models are outpacing us, should
they teach us? | foresee a future where the computer is much more equipped to consistently
sort fractures according to a computer-designed classification (i.e. complex fracture pattern
recognition) and aids us in linking different groups of fractures with specific treatments and
outcomes—facilitating data-driven shared decision-making with patients.

External Validation of an Artificial Intelligence Multilabel Deep Learning Model
Capable of Ankle Fracture Classification

In Chapter 5, we collaborated with Swedish colleagues to externally validate their multi-label
CNN that classifies ankle fractures according to the AO/OTA system. The model performed
well on our external data, despite a different distribution of types of fractures and fewer
radiographic views per patient. This is one of the few studies that externally validates its data,
a crucial step towards more robust models. This study is exemplary for external validation,
using an international collaboration and the challenges they entail. What | discovered during
this study was the number of challenges for labeling data with experts in three countries.
Luckily, our Swedish colleagues developed an online labelling platform where we could log in
and label the data. However, | realize not every research group can build its own platform. If
needed, there are commercial alternatives available. With a small introduction and ‘supervised’
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labelling to smooth out the initial learning curve, this proved to be an efficient approach.
Another valuable take-away was how crucial the consensus meetings were—especially as
there were 40 possible classifications—to ensure consistency across experts. In the future, |
expect international collaborations to build increasingly advanced models, which will likely
use federated learning (i.e. transfer of the algorithm instead of the data itself) to reduce
roadblocks such as dealing with complicated and time-costly legislation, such as ‘data transfer
agreements’.

Artificial Intelligence and 3D-Guided Surgery in Orthopaedic Trauma: Why, How
and What—as a book chapter in Rockwood and Green

Chapter 6 is a book chapter that we wrote for Rockwood and Green, describing Artificial
Intelligence (Al) in orthopaedic trauma in detail, why it is used, how it is employed, and what the
next steps are. The focus of this chapter is on the computer aiding decision-making, providing
probabilities based on data, and reducing the tedious part of the workload of doctors, versus
replacing us entirely. In Orthopaedic Trauma specifically, treatment often depends on where
and by whom you are treated. If an Al model is trained well, the ground truth is well defined and
bias mostly removed, this can help us to create uniform treatment strategies. The computer
does not tire, does not change its decisions based on isolated negative experiences—such
as adverse events, or personal circumstances—and is consistent. However, doctors need to
oversee the computer, not vice versa. Interestingly perhaps, is the question what will happen
when doctors deviate from Al predictions, and turn out to be wrong? Or will these questions
and statements age like the one | was repeatedly told in middle school?; “Learning to quickly
add, subtract, or divide numbers is important as an adult, you cannot bring a calculator
everywhere you go”. Another important discussion is “who should develop these models?”. |
expect a shared approach in medicine, open-source models developed by scientists and new
stakeholders such as technology companies leveraging their expertise and sources of data.
In the end, | believe the goal should be to use computers to overcome human biases and to
support shared decision-making for individual patients.

PART Il Advanced Imaging in Paediatric Ankle Fracture Trauma

Triplane Ankle Fracture Patterns in Paediatric Patients: Extent of Physeal Closure
Does Not Dictate Pathoanatomy

In Chapter 7, we challenged a theory that has been part of classic teaching since 1964, using
advanced imaging in the form of fracture maps. The extent of closure of the physis was
thought to determine the fracture configuration of triplane fractures. In contrast to this long
taught posit, we concluded in this chapter that not the physis, but ligaments play a pivotal role
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in the configuration of these fractures. The corresponding characteristic Y-shaped fracture
pattern at the level of the joint is ubiquitous and independent of sex or age, also when adjusted
for the difference in bone age between boys and girls. It remains a challenge to determine
whether the ligaments serve as a passive protection of the parts where they attach, passively
in increased stress adjacent to their attachments, or play an active role in pulling off the
fragments. However, when combining the findings in this study with the trauma mechanism, an
active role is tenable. Especially as in adults, isolated avulsions of the anterior and posterior
tibia are reported, like the Tillaux-Chaput and Volkmann fractures. If ligaments play an active
role in triplane fractures, they must share similarities with the adult equivalent of a supination
external rotation injury—the trimalleolar fracture. We explored this theory in Chapter 8.

Understanding the Mechanism of Injury and Fracture Pattern of Paediatric
Triplane Ankle Fractures versus Adult Trimalleolar Fractures

Chapter 8 builds on the findings in Chapter 7, where we concluded that the principal determinant
for the triplane fracture pattern is not the extent of physis closure but the ligaments. Following
this conclusion, triplanes should then correspond to adult ankle fractures that are caused by
an identical trauma mechanism, namely a supination external rotation injury—the trimalleolar
fracture. In this chapter, with the use of fracture maps and 3D analysis, we introduced the
concept that triplane fractures consist of four stages in their sequence of injury, following the
description by Lauge-Hansen of Supination External Rotation injuries. We found that triplane
and trimalleolar fractures both follow the stages described by Lauge-Hansen, emphasizing that
paediatric triplane and adult trimalleolar fractures share a similar injury mechanism. However,
there are some differences due to the closure of the physis in triplane fractures, resulting in a
larger anterolateral avulsed fragment (Tillaux) and a subsequent different configuration of the
posterior fragment. Following the Lauge-Hansen classification in triplanes, there are arguments
to suggest the optimal sequence of reduction and fixation techniques—namely, reversing the
sequence of the trauma mechanism. For minimally displaced fractures, first, one should apply
anteriorly directed force to reduce the posterior fragment, and subsequently internally rotate
the foot to reduce the anterolateral fragment, before applying a cast. Ideally, these patients
should receive a cast in slight internal rotation to prevent secondary displacement. When
internally fixating more displaced injuries, first, fixate the posterior fragment by placing an
anteroposterior screw above the physis, remove any periosteum stuck between fracture
fragments and then apply internal rotation to fixate the anterolateral fragment with a lateral
to medial (or vice versa) screw. The concepts introduced in this chapter, together with previous
work in Chapter 7, can be a guide for surgeons, emergency, and junior doctors for fracture
reduction and fixation of triplane fractures.
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PART Il Prospective Analysis of Ankle Fractures

Subtle Factors Associated with Outcome of Ankle Fractures: Do Not Forget Intra-
Articular Loose Bodies

Chapter 9 explored possible ‘subtle’ predictors associated with the outcome of ankle fractures
using post-operative CT scans and Foot and Ankle Outcome Scores (FAOS) at two years
postoperative. Despite the high volume of these injuries, surgical expertise and comfort in
treating them, and diverse studies, ankle fractures suffer from relatively poor outcomes,
and the exact cause remains elusive. This chapter uncovers at least part of the puzzle, as we
found that—aside from the Haraguchi classification—postoperative loose bodies of any size are
associated with worse FAOS scores at two years postoperative. However, in contrast to other
studies, AO/OTA fracture classification nor posterior malleolar fractures did not significantly
affect outcome at two years. The conclusion of this study is supported by two other studies
in the literature, and in addition, these also recommend the routine use of arthroscopy when
a loose body can be appreciated on the pre-operative CT scan. Studies report an added
10-15 minutes to operating time and no significant added complications when used together
with internal fixation. This can be the right approach, allowing careful consideration of
loose bodies formed from just cartilage—as these will be missed on CT and can still cause
issues in these patients. An extra effort should be taken to remove loose bodies and look for
potential osteochondral lesions. Even if an ankle fracture appears simple, there could be more
happening under the surface. For example, more cartilage damage than is expected based on
the fracture type on the radiographs or CT scan. In patients that remain in pain without new
findings on repeat radiographs, MRI can be valuable, as it may reveal small cartilage loose
bodies or osteochondral defects. Based on these findings, routine use of arthroscopy deserves
a place in the treatment of ankle fractures.
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SUMMARY

Diagnostics for ankle fractures mostly relies on imaging. Conventionally with radiographs and
more frequently combined with Computed Tomography (CT) scans. Given the availability of
large datasets of radiographs and CT scans, advanced imaging analyses can be performed
by using Artificial Intelligence (Al) applications and 3D technology. We hypothesized that
advancements in imaging modalities can improve diagnostics, understanding, and treatment
of ankle fractures. Therefore, this thesis explores ankle fractures in adults and children,
using advanced imaging such as Convolutional Neural Networks (CNNs), fracture maps, and
3D reconstructions. Chapter 1 introduces the why, how and what of Al in trauma surgery.

PARTI EXPLORING CONVOLUTIONAL NEURAL NETWORKS
IN ANKLE FRACTURES

An Increasing Number of Convolutional Neural Networks for Fracture Recognition
and Classification in Orthopaedics: are these Externally Validated and Ready for
Clinical Application?

Chapter 2 revealed that although numerous studies have demonstrated impressive accuracy
in detecting and categorizing fractures on radiographs using CNNs, only a few incorporate
external validation (EV) into their performance evaluation process. Furthermore, this
analysis underscores that geographical validation yields better results compared to
temporal validation, which involves separating the validation set based on time. Despite the
widespread acknowledgment of the significance and necessity of EV in CNN studies, this review
underscores the persistent scarcity of such validation practices.

Artificial Intelligence Fracture Recognition on Computed Tomography: Review of
Literature and Recommendations

Chapter 3 explored CNNs in analyzing CT scans. Drawing insights from 17 studies, we concluded
that CNNs hold the potential to improve diagnostics in clinical practice, particularly in scenarios
like the rapid assessment of rib fractures in acute trauma cases. Additionally, CNNs exhibit
the capacity to diminish the occurrence of missed diagnoses on CT scans while concurrently
enhancing diagnostic precision. The omission of EV remains rife in studies focusing on CNN
development for orthopaedic trauma, mirroring the findings of Chapter 2, where only a minority
of studies incorporated EV. Furthermore, our investigation unveiled substantial variability in
the sample sizes across these studies, spanning from 39 to 8529 patients.
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Development and External Validation of Automated Detection, Classification, and
Localization of Ankle Fractures: Inside the Black Box of a Convolutional Neural
Network

In Chapter 4, we developed and externally validated a convolutional neural network (CNN)
capable of accurately detecting, categorizing, and pinpointing fibula fractures, achieving an
impressive accuracy rate of 89%. While fracture detection and classification are not novel, the
integration of these tasks with segmented localization of fracture lines represents a significant
advancement. Notably, when compared to other models with similar tasks, ours demonstrated
superior performance while requiring only one-fourth of the data, underscoring the efficiency
of training an initial CNN to select optimal learning cases. A major obstacle in utilizing these
machine learning models is their inherent “black box” nature, leaving the process behind their
predictions unclear. However, the localization technique employed in our study offers a visual
representation of the CNN's fracture predictions, enabling validation by human experts, thus
bridging the interpretability gap.

External Validation of an Artificial Intelligence Multilabel Deep Learning Model
Capable of Ankle Fracture Classification

In Chapter 5, our collaboration with Swedish colleagues led to the external validation of their
multi-label CNN, designed to classify ankle fractures based on the AO/OTA system. Remarkably,
the model exhibited strong performance on our external dataset, despite variations in the
distribution of fracture types and fewer radiographic views per patient. This study stands out
as one of the rare instances where external validation of data was conducted, representing a
pivotal stride toward fostering more resilient models in the field. This study is exemplary for
external validation using an international collaboration and the challenges they entail.

Artificial Intelligence and 3D-Guided Surgery in Orthopaedic Trauma: Why, How
and What—as a book chapter in Rockwood and Green

Chapter 6, authored by Rockwood and Green, offers an exhaustive exploration of the clinical
implementation of Al in Orthopaedic Trauma. Delving into the rationale behind its utilization,
the chapter elucidates how Al is harnessed and outlines the forthcoming endeavors in the
field. Central is the role of Al in augmenting decision-making processes, with probabilistic
insights grounded in data, and alleviating the burdensome aspects of doctors’ workloads. In
Orthopaedic Trauma, treatment outcomes often hinge on the specifics of where and by whom
the patient is treated. A well-trained Al model, characterized by clearly defined ground truths
and minimal bias, holds the potential to streamline and standardize treatment approaches,
thereby fostering uniformity in clinical strategies.
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PART Il Advanced Imaging in Paediatric Ankle Fractures

Triplane Ankle Fracture Patterns in Paediatric Patients: Extent of Physeal Closure
Does Not Dictate Pathoanatomy

In Chapter 7, we challenged a theory that has been part of traditional teaching since 1964,
leveraging advanced imaging in the form of fracture maps. Historically, the extent of physeal
closure has been believed to dictate the configuration of triplane fractures. Contrary to this
longstanding notion, our findings in this chapter revealed a paradigm shift: while the physeal
closure does have some influence, it is primarily the ligaments (PITFL, AITFL, and medial
deltoid) that exert a pivotal role in shaping these fractures. We observed a characteristic
Y-shaped fracture pattern at the joint level, a hallmark feature that proved consistent across
sexes and ages, even after accounting for differences in bone age between boys and girls.

Understanding the Mechanism of Injury and Fracture Pattern of Paediatric
Triplane Ankle Fractures versus Adult Trimalleolar Fractures

Chapter 8 extends upon Chapter 7, where we challenged the conventional belief regarding triplane
fracture patterns, emphasizing the importance of ligaments over physeal closure. Hence, we posited
that triplane fractures should correspond to adult ankle fractures resulting from a similar trauma
mechanism, specifically the supination external rotation injury—such as a trimalleolar fracture.
Through the utilization of fracture maps and 3D analysis, we introduced the concept that triplane
fractures unfold with the stages delineated in the Lauge-Hansen Supination External Rotation
injury classification. Our investigation unveiled a striking parallel between triplane and trimalleolar
fractures, both adhering to the injury sequence elucidated by Lauge-Hansen, thus underscoring the
shared underlying injury mechanism between pediatric triplane and adult trimalleolar fractures.

PART Il Prospective Analysis of Ankle Fractures

Subtle Factors Associated with Outcome of Ankle Fractures: Do Not Forget Intra-
Articular Loose Bodies

Chapter 9 delved into potential “subtle” predictors linked to the outcomes of ankle fractures
by leveraging post-operative CT scans and Foot and Ankle Outcome Scores (FAQOS) assessed
at the two-year postoperative mark. Despite the prevalence of these injuries, the abundance
of surgical expertise, and the diverse array of studies, ankle fracture fixation often results in
suboptimal outcomes. This chapter sheds light on a portion of this, revealing that, beyond the
Haraguchi classification, the presence of postoperative loose bodies of any size—as a hallmark
of osteochondral injury—correlates with poorer FAOS scores two years postoperative.
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NEDERLANDSE SAMENVATTING

De diagnostiek van enkelbreuken vindt plaats naast een gedegen anamnese en lichamelijk
onderzoek, met beeldvorming. Doorgaans met rontgenfoto’s, maar tegenwoordig ook steeds
vaker gecombineerd met Computed Tomography (CT)-scans. Gezien de beschikbaarheid van
grote datasets van rontgenfoto's en CT-scans, kunnen geavanceerde analyses gedaan worden
met behulp van kunstmatige intelligentie (Al) en 3D-technologie. Dit proefschrift onderzocht
de hypothese dat vooruitgangen in beeldvorming de diagnostiek, de kennis en de behandeling
van enkelbreuken kunnen verbeteren. Daarom verkent dit proefschrift enkelbreuken bij zowel
volwassenen als kinderen, met gebruik van geavanceerde beeldvorming zoals Convolutional
Neural Networks (CNN's), ‘fracture maps', en 3D-reconstructies. Hoofdstuk 1 introduceert
waarom, hoe en waarmee Al gebruikt wordt binnen de traumachirurgie.

PARTI EXPLORING CONVOLUTIONAL NEURAL NETWORKS
IN ANKLE FRACTURES

An Increasing Number of Convolutional Neural Networks for Fracture Recognition
and Classification in Orthopaedics: Are these Externally Validated and Ready for
Clinical Application?

Hoofdstuk 2 toont aan dat hoewel talloze studies indrukwekkende nauwkeurigheid laten zien
in het detecteren en classificeren van breuken op rontgenfoto’s met behulp van CNN's, slechts
enkele studies externe validatie (EV) toepassen. Deze systematische review benadrukt verder
dat geografische validatie een betere methode is om de kwaliteit van een model te evalueren
in vergelijking met temporele validatie—het scheiden van de validatie- en trainingdataset
op basis van tijd. Ondanks de brede erkenning van het belang en de noodzaak van EV in de
studies in deze systematische review, blijft er een gebrek aan het gebruik ervan. Dit betekent
dat van veel gepubliceerde modellen er nog niet genoeg bekend is over hoe goed deze werken
in verschillende klinische omgevingen, met wisselende patiént populaties.

Artificial Intelligence Fracture Recognition on Computed Tomography: Review of
Literature and Recommendations

Hoofdstuk 3 onderzocht het gebruik van CNN's in de analyse van CT-scans. Op basis van 17
studies concludeerden we dat CNN’s de potentie hebben om de diagnostiek in de klinische
praktijk te verbeteren, bijvoorbeeld voor de snelle beoordeling van gebroken ribben bij de
opvang van acute ongevallen. Bovendien blijken CNN's in staat te zijn om het aantal gemiste
diagnoses op CT-scans te verminderen, terwijl tegelijkertijd het aantal juiste diagnoses
toeneemt. Echter, net zoals in Hoofdstuk 2, was er een gebrek aan externe validatie. Ons
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onderzoek toonde aanzienlijke variabiliteit in het aantal patiénten dat werd gebruikt voor het
trainen van de CNN's in deze studies, variérend van 39 tot 8529.

Development and External Validation of Automated Detection, Classification, and
Localization of Ankle Fractures: Inside the Black Box of a Convolutional Neural
Network

In Hoofdstuk 4 ontwikkelden we een convolutional neural network (CNN) dat zeer nauwkeurig
fibulafracturen (kuitbeenbreuken) kan detecteren, classificeren en lokaliseren, met een
indrukwekkende nauwkeurigheid van 89%. Hoewel breukdetectie en -classificatie niet nieuw
zijn, is de integratie van deze taken met gelokaliseerde segmentatie—dat wil zeggen het
aanduiden van de specifieke plek—van breuklijnen een belangrijke vooruitgang. Opmerkelijk is
dat ons model, vergeleken met andere modellen, superieure prestaties vertoonde, terwijl het
getraind is met slechts één vierde van het aantal patiénten. Dit benadrukt het nut van het trainen
van een initiéle CNN, die patiénten selecteert waar het uiteindelijke CNN zo efficiént mogelijk
van kan leren. Een groot obstakel bij het gebruik van deze machine learning-modellen is de
beruchte “zwarte doos”, waardoor het proces achter hun voorspellingen onduidelijk blijft. De
segmentatie die in ons onderzoek werd gebruikt, biedt echter een visuele representatie van het
CNN, waardoor validatie door dokters gefaciliteerd wordt en de kloof in interpretatie overbrugd.

External Validation of an Artificial Intelligence Multilabel Deep Learning Model
Capable of Ankle Fracture Classification

In Hoofdstuk 5 leidde onze samenwerking met Zweedse collegae tot de externe validatie van
hun multi-label CNN, ontworpen om enkelbreuken te classificeren op basis van de AO/OTA-
classificatie. Opmerkelijk is dat het model goede prestaties vertoonde op onze externe dataset,
ondanks variaties in de verdeling van breuktypen en minder réntgen views—in onze dataset
mistte de mortise view—per patiént. Deze studie valt op als een van de zeldzame gevallen
waarin externe validatie werd uitgevoerd, en vormt een belangrijke stap naar ontwikkelen van
robuustere modellen. Deze studie is een voorbeeld van externe validatie door internationale
samenwerking en de uitdagingen die daarmee gepaard gaan.

Artificial Intelligence and 3D-Guided Surgery in Orthopaedic Trauma: Why, How
and What—as a book chapter in Rockwood and Green

Hoofdstuk 6, als deel van het toonaangevende boek ‘Rockwood and Green: Fractures in Adults’,
biedt een uitgebreide verkenning van de klinische implementatie van Al in traumatologie. Het
hoofdstuk gaat in op de vraag waarom Al gebruikt wordt, hoe Al wordt ingezet en schetst de
toekomstige inspanningen op dit gebied. Centraal staat de rol van Al bij het versterken van
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besluitvormingsprocessen, met voorspellende inzichten gebaseerd op kansen, en het verlichten
van de werkdruk van artsen. Binnen de traumatologie hangt de behandeling regelmatig af
van specifieke omstandigheden—namelijk waar en door wie de patiént wordt behandeld. Een
goed getraind Al-model, gekarakteriseerd door duidelijk gedefinieerde ‘Ground Truth’ en
zo min mogelijke vooroordelen, heeft potentie om behandelmethoden te stroomlijnen en te
standaardiseren, met als uiteindelijke doel; uniformiteit in de behandeling van specifieke letsels.

PART Il Advanced Imaging in Paediatric Ankle Fractures

Triplane Ankle Fracture Patterns in Paediatric Patients: Extent of Physeal Closure
Does Not Dictate Pathoanatomy

In Hoofdstuk 7 onderzochten we een theorie die sinds 1964 als klassiek gedachtegoed is
opgenomen binnen de traumatologie. We hebben deze theorie getest door gebruik te maken
van geavanceerde beeldvorming in de vorm van ‘fracture maps'—een afbeelding met daarop
een verzameling van breuk-patronen op een specifieke anatomische locatie. Historisch werd
aangenomen dat de mate van sluiting van de groeischijf bepalend was voor de configuratie van
triplane breuken. In tegenstelling tot dit klassieke gedachtegoed, zorgen onze bevindingen in
dit hoofdstuk voor een paradigma verschuiving: hoewel de groeischijf enige invloed heeft, zijn
het vooral de ligamenten (posterieure-inferieure tibiofibulaire ligament, anterieure-inferieure
tibiofibulaire ligament en lig. deltoideum) die een cruciale rol spelen bij het vormen van deze
fracturen. We observeerden een kenmerkend Y-vormig fractuurpatroon ter hoogte van het
gewricht, een kenmerk dat consistent was ongeacht leeftijd, en bij zowel jongens als meisjes, zelfs
nadat we corrigeerden voor de verschillen in botleeftijd—een verschil van ongeveer twee jaar.

Understanding the Mechanism of Injury and Fracture Pattern of Paediatric
Triplane Ankle Fractures versus Adult Trimalleolar Fractures

Hoofdstuk 8 gaat verder waar Hoofdstuk 7 stopt, namelijk waar we de traditionele opvatting
over triplane fractuurpatronen testten en het belang van ligamenten boven groeischijf
sluiting benadrukten. Gezien ligamenten een minstens zo belangrijkere rol spelen in deze
letsels als de groeischijf, stelden we dat triplane breuken daarom overeen moeten komen
met volwassen enkelbreuken die het gevolg zijn van een soortgelijk trauma-mechanisme—de
trimalleolaire enkelfractuur. Ons onderzoek onthult een opvallende overeenkomst tussen
triplane en trimalleolaire fracturen, die beiden het supinatie externe-rotatie patroon volgen
zoals beschreven door Lauge-Hansen, wat het onderliggende gemeenschappelijke letsel
mechanisme tussen de triplane fracturen bij kinderen en volwassen trimalleolaire fracturen
benadrukt. Op basis van deze bevinding, suggereren we de optimale manier om triplane
fracturen gesloten en open te reduceren en fixeren.
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PART Il Prospective Analysis of Ankle Fractures

Subtle Factors Associated With Outcome of Ankle Fractures: Do Not Forget Intra-
Articular Loose Bodies

In Hoofdstuk 9 onderzochten we mogelijke “subtiele” voorspellers die verband houden met
de uitkomsten van enkelfracturen door gebruik te maken van postoperatieve CT-scans en de
Foot and Ankle Outcome Scores (FAOS) tweejaar postoperatief. Ondanks de prevalentie van
deze letsels, de overvloed aan chirurgische expertise en de diverse reeks aan studies, leidt
de behandeling van enkelfracturen vaak tot suboptimale uitkomsten. Dit hoofdstuk werpt
licht op een gedeelte hiervan, door aan te tonen dat, naast de Haraguchi-classificatie, de
aanwezigheid van postoperatieve corpora aliena onafhankelijk van hun grootte—als kenmerk
van osteochondrale letsels—geassocieerd is met slechtere functionele uitkomsten (FAOS-
scores) twee jaar na de operatie.
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DANKWOORD

Geachte lezer,

Dit proefschrift is tot stand gekomen door middel van een internationale samenwerking tussen
Nederland en Australié. Dat is niet alleen tekenend voor dit proefschrift, maar ook voor mij als
persoon. Het is een kenmerkende gebeurtenis in mijn leven, en ik koester de ervaringen die
ik op heb mogen doen op zowel wetenschappelijk, medisch als persoonlijk vlak. De kaft van
dit proefschrift combineert beide landen met het onderwerp van dit proefschrift—namelijk
enkelfracturen. De roze lijn geeft de route weer die ik afgelegd heb tijdens mijn reizen door
Australié en symboliseert de reis van dit proefschrift.

Zonder samen te werken was dit proefschrift nooit gelukt. Het heeft geleid tot onvergetelijke
avonturen in Australié en op congressen, hechte vriendschap en natuurlijk veel nieuwe en
inspirerende wetenschappelijke inzichten en vaardigheden. Naast alle patiénten die mee
hebben gedaan in de onderzoeken in dit proefschrift wil ik graag de volgende personen in het
bijzonder bedanken:

Het promotieteam in volgorde van kennismaking:

Dr. F.F.A. lJpma

Beste Frank, waar moet ik beginnen? Onze ontmoeting is de basis van de reis die we samen
hebben afgelegd sinds 2018. Wat begon als een project zodat ik naar Boston zou kunnen, is
uiteindelijk uitgegroeid tot een hechte samenwerking en vriendschap. Jij was bij elke stap, van
beginnende coassistent, promovendus, beginnende dokter en nu in opleiding tot chirurg. Ik
ben je enorm dankbaar voor je vertrouwen (‘het komt wel goed') en de steun die je vanaf het
begin geboden hebt. Ik heb altijd op je kunnen rekenen, als het onderzoek niet zo soepel liep of
als er weer eens een deadline op het nippertje gehaald moest worden. Daarnaast natuurlijk de
mooie momenten, assisteren op OK in de dienst, daarna CT-scans bekijken tot diep in de nacht,
of de stad in, onvergetelijke momenten tijdens de traumadagen, en recent samen opereren!
Je bent altijd vol goede ideeén en hebt veel studies beter gemaakt met jouw scherpe blik. Het
was een prachtige reis, en ik kijk ernaar uit nog veel van je te leren.

Prof. dr. J.N. Doornberg

Beste Job, jij bent de katalysator geweest in Australié in mijn ontwikkeling van beginnende
onderzoeker tot ervaren promovendus. Onze ontmoeting begon in Amsterdam in 2019, en al
snel met succes. Samen hebben we al vlot een eerste beurs binnengesleept zodat ik naar
Australié kon verhuizen, met nog vele die volgden. Je hebt mij de vrijheid en ondersteuning
gegeven om in korte tijd een enorme ontwikkeling door te maken. Jouw creativiteit en energie
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zijn aanstekelijk. Je hebt mij gemotiveerd om voor grote (inter)nationale podia ons onderzoek te
delen, ervaringen waar ik erg van genoten heb. In het onderzoek was niets te gek of onhaalbaar.
Bij uitdagingen denk ik nog regelmatig aan jouw adagium: ‘if it was easy, everybody would do
it'". Daarnaast vergeet ik natuurlijk nooit meer de gezellige barbecues aan Shore Court of het
bouwen van de koffie-kar aan de Onnerweg.

Prof. dr. R.L. Jaarsma

Beste Ruurd, zoals elk nieuw begin bij orthopaedics in Flinders begon onze ontmoeting met
een ‘latte’ bij Theo's, iets wat we daarna nog vaak herhaald hebben. Niet alleen voor cruciale
‘roadblocks’ in het onderzoek, maar ik waardeer het ook enorm dat je altijd tijd had om over
persoonlijke zaken te praten en over doelen in het leven te sparren. Daarnaast zorg jij samen
met Pinky voor een warm thuis voor alle onderzoekers en fellows in Adelaide. Een voorbeeld
daarvan waren de barbecues rond kerst met surfen in Middleton, die altijd druk bezocht
werden! Bij het onderzoek dacht je altijd pragmatisch mee wat er mogelijk was, en hoe dat
dan het beste aangevlogen kon worden. Je hebt mij gemotiveerd om zelf initiatief te nemen in
verschillende projecten, van een workstation bouwen voor de Al studies, tot samen microfoons
in het plafond schroeven voor beter geluid bij de ochtendoverdracht. Door jou zal Australié
altijd als een tweede thuis voelen.

Prof. dr. P.C. Jutte

Beste Paul, jij hebt ervoor gezorgd dat ik na een succesvol jaar in Flinders uiteindelijk in
Groningen de eerste Adelaide-Groningen MD-PhD’er kon worden. Zonder jouw hulp zou het
onmogelijk zijn geweest te navigeren tussen twee universiteiten. De samenwerking tussen
Adelaide en Groningen heeft veel betekend voor mijn proefschrift, maar ook voor mijzelf. Als
MD-PhD’er kreeg ik de kans opnieuw af te reizen naar Adelaide, op naar een tweede avontuur!
Ik wil je bedanken voor je waardevolle adviezen onderweg en de warme ontvangst vanuit
Australié op de afdeling orthopedie in het UMCG.

Co-auteurs

Beste coauteurs, ik dank jullie voor de bijdrage aan dit proefschrift. Ik heb erg genoten van
jullie kritische noten en harde werk. Ik ben trots op de studies die we samen gepubliceerd
hebben, en hoop in de toekomst onze vruchtbare wetenschappelijke samenwerking voort te
zetten! Ik wil in het bijzonder nog dr. Sierevelt bedanken voor de cruciale hulp bij de statistiek
in het laatste hoofdstuk.

Mr. Bhavin Jadav

Dear Bhavin, you are always in a good mood and bursting with clinically relevant research
questions! Your observation that the adolescent triplane fracture looks like an adult pilon
fracture has led to one of the pearls of this thesis. You inspired me with your drive to educate
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during morning handover, providing sharp clinical comments on papers and thorough
explanations of anatomy and your thoughts on trauma mechanisms and resulting injuries.

Mr. Jaideep Rawat

Dear Jai, thank you so much for sitting down with me many times in the orthopaedic office
and going through the countless CT-scans of children with transitional ankle fractures. | have
learned a lot exploring these scans with you. Your expertise in diagnosing and treating these
injuries has been essential for two landmark papers on triplane fractures.

Drs. K. ten Duis

Beste Kaj, heel erg bedankt voor de gezellige en leerzame samenwerking aan twee mooie
studies in dit proefschrift. Ik waardeer de tijd die je hebt genomen om samen door alle scans
te gaan met triplane fracturen. Je klinische blik en kritische opmerkingen waren een zeer
waardevolle toevoeging. Ik hoop als chirurg in opleiding nog veel van je te leren.

Sylvia McAndrew

Dear Sylvia, you are the glue of the department of orthopaedics in Flinders. Your optimistic
mood and humor always made sure it was a pleasure dropping in. | enjoyed our coffees
together and treasure the barbecue that you organized in your home (Jerry setting the grill
on fire will always be a great memory). | appreciate the advice that you have given me during
my time at Flinders. | look forward to sharing a glass of champagne after my defense!

Overige leden van de promotiecommissie: prof. dr. J.P.P.M. de Vries, prof. dr. M. Maas, prof.
dr. P.M.A. van Ooijen and associate prof. dr. T. White.

Geachte leden van de promotiecommissie, ik dank jullie voor de tijd, kritische vragen en
bovenal interesse in dit proefschrift.

Fellows en onderzoekers in Australié

Bedankt voor de fijne tijd die we met elkaar hadden, terwijl we allemaal ver van huis waren.
Zowel tijdens het onderzoek, als daarnaast met de barbecues op het strand tijdens kerst, of
de uitdagende partijen op de tennisbaan. In het bijzonder wil ik Reinier Spek en Marouska van
Boxel bedanken voor de hulp bij het onderzoek, de gezellige etentjes en leerzame research
meetings gedurende een pandemie in een land afgesloten van de rest van de wereld.

Collegae Chirurgie Martini Ziekenhuis

Beste collegae uit het Martini Ziekenhuis, bedankt voor de gezelligheid in de kliniek, vele
borrels en jullie aanwezigheid bij het vieren van belangrijke momenten tijdens de afronding
van dit proefschrift.
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Paranimf Thijs Vaartjes

Beste Thijs, van samen op de basisschool naar samen promoveren--wie had dat ooit gedacht?
Het voelt bijzonder om dit belangrijke hoofdstuk in ons leven samen te doorlopen. Naast het
onderzoek waardeer ik onze gesprekken over de essentie.

Paranimf Angad Bedi

Beste Angad, onze maandagochtenden in het UMCG om 07.00 uur na de researchmeeting
hebben naast een slaaptekort ook geleid tot een waardevolle vriendschap. Ontspanning vind
ik niet alleen in onze gesprekken, maar ook samen op de golfbaan.

Ik wil jullie allebei bedanken voor jullie onvermoeibare steun, maar vooral voor jullie
vriendschap. Voor de avonden bij de Uurwerker, het nachtelijke ouwehoeren in de Poelestraat,
en de onvergetelijke herinneringen die we hebben gemaakt op de traumadagen. De laatste
fase van mijn PhD is onlosmakelijk met jullie verbonden. Ik kijk ernaar uit om nog lang van
jullie vriendschap te genieten.

Floris

Lieve Floris, tijdens mijn reis met dit proefschrift heb jij je gestort op heel complexe materie
tijdens je studie sterrenkunde. Ik ben trots op je dat het je gelukt is de studie zonder moeite
af te ronden. Daarnaast geniet ik van onze schaakpartijen, al verlies ik regelmatig door jouw
sterke analytische denkwijze. Ik hoop dat je met net zo veel plezier als ik nog een academisch
pad zal bewandelen.

Pap en Mam

Lieve Papa en Mama, ik ben jullie erg dankbaar voor de zorgeloze jeugd die jullie ons hebben
gegeven. Jullie staan altijd voor Floris en mij klaar, en ik waardeer jullie vrijgevigheid en
warmte. Ondanks jullie niet-medische achtergrond, zijn jullie altijd geinteresseerd en
nieuwsgierig geweest naar de studies en uitdagingen van dit proefschrift. Ik hoop nog vele
jaren van jullie adviezen en gezelligheid te kunnen genieten.

Anke

Lieve Anke, jij staat altijd aan mijn zij. Samen begonnen met de studie geneeskunde, samen
coschappen gelopen, samen naar Australié en allebei als dokter aan het werk. Je bent een enorme
steun geweest vanaf het begin. Samen zijn we een waanzinnig avontuur aangegaan ‘Down Under’.
Ondanks de grote spinnen ging jij vol enthousiasme mee. De herinneringen die we daar hebben
gemaakt ga ik nooit vergeten. We hebben zelfs samen een paper geschreven! Daarnaast zorgde
je voor de nodige balans door roadtrips naar ‘the Outback’ te plannen. |k ben heel dankbaar voor
de onvoorwaardelijke liefde en steun die je mij nog dagelijks geeft. Ook ben ik heel trots op de
route die jij als dokter bewandelt, en weet zeker dat je een fantastische huisarts zal zijn.
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